$(1- \dfrac{x^{2}}{n})^{n} \le (e^\frac{-x^{2}}{n})^{n} \le e^{-x^{2}} $ because $1-u \le e^{-u}$
$ e^{-x^{2}} $ is integrable and $f_{n}(x)= (1- \dfrac{x^{2}}{n}) $ converges $f(x)= e^{-x^{2}} $ pointwise . By using Dominated Convergence Theorem. so $$ \lim_{n \rightarrow\infty} \int f_{n} d \mu =\int f d\mu $$ then $$ \lim_{n \rightarrow\infty} \int^{\sqrt{n}}_{0} (1- \dfrac{x^{2}}{n}) d x =\int^{\infty}_{0} e^{-x^{2}} dx $$ so lets say $$ A= \int^{\infty}_{0} e^{-x^{2}} dx $$ then $$ A^{2}= \int^{\infty}_{0} \int^{\infty}_{0} e^{-(x^{2}+y^{2})} dx $$... Ok, I think it is enough , can you continue yourself now ?