Your theorem statement is incomplete. Requirements have been omitted.
To amplify the insights of @Troy Woo, given a matrix $\mathbf{A}\in\mathbb{C}^{m \times n}$, a solution vector $x\in\mathbb{C}^{n}$, and a data vector $b\in\mathbb{C}^{m}$ such that $b\notin\mathcal{N}(\mathbf{A}^{*})$, and where $n\in\mathbb{N}$ and $m\in\mathbb{N}$, the linear system
$$
\mathbf{A} x = b
$$
has the least squares solution can be expressed in terms of the Moore-Penrose pseudoinverse $\mathbf{A}^{\dagger}$:
$$
x_{LS} = \mathbf{A}^{\dagger}b + \left(\mathbf{I}_{n} - \mathbf{A}^{\dagger}\mathbf{A} \right) y
$$
with the arbitrary vector $y\in\mathbb{C}^{n}$.
If the matrix rank $\rho < m$, the null space $\mathcal{N}\left(\mathbf{A}\right)$ is non-trivial and the projection operator $\left(\mathbf{I}_{n} - \mathbf{A}^{\dagger}\mathbf{A} \right)$ is non-zero.
Example
The linear system
$$
\begin{align}
\mathbf{A} x & = b \\
%
\left[
\begin{array}{cc}
1 & 0
\end{array}
\right]
%
\left[
\begin{array}{c}
x_{1} \\
x_{2}
\end{array}
\right]
%
&=
%
\left[
\begin{array}{c}
b_{1}
\end{array}
\right]
\end{align}
$$
has the least squares solution
$$
\begin{align}
x_{LS} & = \mathbf{A}^{\dagger} b + \left( \mathbf{I}_{2} - \mathbf{A}^{\dagger} \mathbf{A}\right) y\\
%
&=
%
\left[
\begin{array}{c}
b_{1} \\
0
\end{array}
\right]
%
+
%
\alpha
\left[
\begin{array}{c}
0 \\
1
\end{array}
\right]
\end{align}
$$
with $\alpha \in \mathbb{C}^{n}$.
The affine space of the solution satisfies
$$
\mathbf{A} \left(
\left[
\begin{array}{c}
b_{1} \\
0
\end{array}
\right]
%
+
%
\alpha
\left[
\begin{array}{c}
0 \\
1
\end{array}
\right]
\right) =
%
\mathbf{A} \left(
\left[
\begin{array}{c}
b_{1} \\
0
\end{array}
\right]
\right)
%
+
%
\alpha
\mathbf{A}
\left(
\left[
\begin{array}{c}
0 \\
1
\end{array}
\right]
\right) =
%
\mathbf{A} \left(
\left[
\begin{array}{c}
b_{1} \\
0
\end{array}
\right]
\right).
$$
The solution vector of least norm,
$$\Bigg\lVert
\left[
\begin{array}{c}
b_{1} \\
0
\end{array}
\right]
%
+
%
\alpha
\left[
\begin{array}{c}
0 \\
1
\end{array}
\right]
\Bigg\rVert_{2}^{2}$$
corresponds to $\alpha=0$.