For
A=$\begin{pmatrix}0&1&1&1\\ \:1&-1&0&1\\ \:1&1&1&1\\ \:0&-1&0&1\end{pmatrix}$ and b=$\begin{pmatrix}5\\ \:3\\ \:-1\\ \:1\end{pmatrix}$
How would one show that a least-squares solution to Ax=b is not unique and solve the normal equations to find all of the least-squares solutions?
What I have done:
So I found $A^TA=\begin{pmatrix}3&0&3&0\\ 0&3&1&2\\ 3&1&4&0\\ 0&2&0&2\end{pmatrix}$ and $A^Tb=\begin{pmatrix}3\\ 3\\ 8\\ -2\end{pmatrix}$
I then solved by row reduction and got that $\begin{pmatrix}3&0&3&0&3\\ \:0&3&1&2&3\\ \:3&1&4&0&8\\ \:0&2&0&2&-2\end{pmatrix}$ reduced to $\begin{pmatrix}3&0&3&0&3\\ 0&3&1&2&3\\ 0&0&\frac{2}{3}&-\frac{2}{3}&4\\ 0&0&0&0&0\end{pmatrix}$
I am not sure where to go from here...