$$\sum _{ n=-\infty }^{ \infty }{ \frac { 1 }{ { \left( j\omega +j\frac { 2\pi n }{ T } \right) }^{ 2 } } }=\sum _{ n=-\infty }^{ \infty }{ \frac { 1 }{ { j^2\left( \omega +\frac { 2\pi n }{ T } \right) }^{ 2 } } }=-\sum _{ n=-\infty }^{ \infty }{ \frac { 1 }{ { \left( \omega +\frac { 2\pi n }{ T } \right) }^{ 2 } } }=$$
$$-\sum _{ n=-\infty }^{ \infty }{ \frac { 1 }{ { \left( \omega +\frac { 2\pi n }{ T } \right) }^{ 2 } } }=\frac{d}{d\omega } (\sum _{ n=-\infty }^{ \infty }{ \frac { 1 }{ { \left( \omega +\frac { 2\pi n }{ T } \right) } } })$$
now we need to find out
$$\sum _{ n=-\infty }^{ \infty }{ \frac { 1 }{ { \left( \omega +\frac { 2\pi n }{ T } \right) } } }$$
There is a series representation as partial fraction expansion where just translated reciprocal functions are summed up, such that the poles of the cotangent function and the reciprocal functions match. Reference link
Please check note 12.
$$\pi \cot(\pi x)=\sum _{ n=-\infty }^{ \infty }{ \frac { 1 }{ { \left( x+n \right) } } }$$
There is also a proof in here how to get that series expansion.
Now we can use this identity and get :
$$\sum _{ n=-\infty }^{ \infty }{ \frac { 1 }{ { \left( \omega +\frac { 2\pi n }{ T } \right) } } }=\frac { T }{ 2\pi }\sum _{ n=-\infty }^{ \infty }{ \frac { 1 }{ { \left( \frac {\omega T }{ 2\pi } +n \right) } } }=$$
$$=\pi . \frac { T }{ 2\pi }\cot(\pi \frac {\omega T }{ 2\pi })=\frac { T }{ 2 }\cot(\frac {\omega T }{ 2 })$$
Now just you need to do final step.
$$\sum _{ n=-\infty }^{ \infty }{ \frac { 1 }{ { \left( j\omega +j\frac { 2\pi n }{ T } \right) }^{ 2 } } }=\frac{d}{d\omega } (\sum _{ n=-\infty }^{ \infty }{ \frac { 1 }{ { \left( \omega +\frac { 2\pi n }{ T } \right) } } })=\frac{d}{d\omega }(\frac { T }{ 2 }\cot(\frac {\omega T }{ 2 }))$$
Can you finalize it to get the answer that you wrote?
Please let me know if you need help.
EDIT: I also found a nice proof for series expansion of $ \cot(x)$ in here. It was shared by @Raymond Manzoni