The answer is posed as a special case of a general problem.
$(1)$ Singular Value Decomposition
Every matrix
$$
\mathbf{A} \in \mathbb{C}^{m\times n}_{\rho}
$$
has a singular value decomposition
$$
\begin{align}
\mathbf{A} &=
\mathbf{U} \, \Sigma \, \mathbf{V}^{*} \\
%
&=
% U
\left[ \begin{array}{cc}
\color{blue}{\mathbf{U}_{\mathcal{R}}} & \color{red}{\mathbf{U}_{\mathcal{N}}}
\end{array} \right]
% Sigma
\left[ \begin{array}{cc}
\mathbf{S}_{\rho\times \rho} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array} \right]
% V*
\left[ \begin{array}{c}
\color{blue}{\mathbf{V}_{\mathcal{R}}}^{*} \\
\color{red}{\mathbf{V}_{\mathcal{N}}}^{*}
\end{array} \right] \\
%
%
&=
% U
\left[ \begin{array}{cc}
\color{blue}{\mathbf{U}_{\mathcal{R}}} & \color{red}{\mathbf{U}_{\mathcal{N}}}
\end{array} \right]
% Sigma
\left[ \begin{array}{cccc|cc}
\sigma_{1} & 0 & \dots & & & \dots & 0 \\
0 & \sigma_{2} \\
\vdots && \ddots \\
& & & \sigma_{\rho} \\\hline
& & & & 0 & \\
\vdots &&&&&\ddots \\
0 & & & & & & 0 \\
\end{array} \right]
% V
\left[ \begin{array}{c}
\color{blue}{\mathbf{V}_{\mathcal{R}}}^{*} \\
\color{red}{\mathbf{V}_{\mathcal{N}}}^{*}
\end{array} \right] \\
%
& =
% U
\left[ \begin{array}{cccccccc}
\color{blue}{u_{1}} & \dots & \color{blue}{u_{\rho}} & \color{red}{u_{\rho+1}} & \dots & \color{red}{u_{n}}
\end{array} \right]
% Sigma
\left[ \begin{array}{cc}
\mathbf{S} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array} \right]
% V
\left[ \begin{array}{c}
\color{blue}{v_{1}^{*}} \\
\vdots \\
\color{blue}{v_{\rho}^{*}} \\
\color{red}{v_{\rho+1}^{*}} \\
\vdots \\
\color{red}{v_{n}^{*}}
\end{array} \right]
%
\end{align}
$$
The $\rho$ singular values are ordered and satisfy
$$
\sigma_{1} \ge \sigma_{2} \ge \dots \sigma_{\rho} > 0
$$
The column vectors are orthonormal basis vectors:
$$
\begin{align}
% R A
\color{blue}{\mathcal{R} \left( \mathbf{A} \right)} &=
\text{span} \left\{
\color{blue}{u_{1}}, \dots , \color{blue}{u_{\rho}}
\right\} \\
% R A*
\color{blue}{\mathcal{R} \left( \mathbf{A}^{*} \right)} &=
\text{span} \left\{
\color{blue}{v_{1}}, \dots , \color{blue}{v_{\rho}}
\right\} \\
% N A*
\color{red}{\mathcal{N} \left( \mathbf{A}^{*} \right)} &=
\text{span} \left\{
\color{red}{u_{\rho+1}}, \dots , \color{red}{u_{m}}
\right\} \\
% N A
\color{red}{\mathcal{N} \left( \mathbf{A} \right)} &=
\text{span} \left\{
\color{red}{v_{\rho+1}}, \dots , \color{red}{v_{n}}
\right\} \\
%
\end{align}
$$
Moore-Penrose Pseudoinverse Matrix
$$
\begin{align}
\mathbf{A}^{+} &= \mathbf{V} \, \Sigma^{+} \mathbf{U}^{*} \\
%
&=
% V
\left[ \begin{array}{cc}
\color{blue}{\mathbf{V}_{\mathcal{R}}} &
\color{red}{\mathbf{V}_{\mathcal{N}}}
\end{array} \right]
% Sigma
\left[ \begin{array}{cc}
\mathbf{S}^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array} \right]
%
% U
\left[ \begin{array}{c}
\color{blue}{\mathbf{U}_{\mathcal{R}}}^{*} \\
\color{red}{\mathbf{U}_{\mathcal{N}}}^{*}
\end{array} \right] \\
%
\end{align}
%
$$
Special Case: $m=n=\rho$
Your question is about the special case of a square matrix with full rank. In this instance the pseudoinverse is equivalent to the classic inverse:
$$
\mathbf{A}^{+} = \mathbf{A}^{-1}
$$
Both null spaces are trivial:
$$
\color{red}{\mathcal{N} \left( \mathbf{A} \right)} = \color{red}{\mathcal{N} \left( \mathbf{A}^{*} \right)} = \mathbf{0}
$$
The SVD is
$$
\mathbf{A} =
%
\color{blue}{\mathbf{U}_{\mathcal{R}}}\,
% Sigma
\mathbf{S} \,
% V
\color{blue}{\mathbf{V}_{\mathcal{R}}}^{*}
%
$$
and the inverse is
$$
\mathbf{A}^{+} =
%
\color{blue}{\mathbf{V}_{\mathcal{R}}}\,
% Sigma
\mathbf{S}^{-1} \,
% V
\color{blue}{\mathbf{U}_{\mathcal{R}}}^{*}
%
= \left( \color{blue}{\mathbf{U}_{\mathcal{R}}}\,
% Sigma
\mathbf{S} \,
% V
\color{blue}{\mathbf{V}_{\mathcal{R}}}^{*} \right)^{-1}
%
= \mathbf{A}^{-1}
%
$$
More about classification of matrix inverses: What forms does the Moore-Penrose inverse take under systems with full rank, full column rank, and full row rank?
$(2)$ Matrix Norm
$$
\lVert \mathbf{A} \rVert_{2} = \sigma_{1},
\qquad \Rightarrow \qquad
\lVert \mathbf{A}^{-1} \rVert_{2} = \frac{1}{\sigma_{\rho}}
$$
$(3)$ Condition Number
$$
\kappa_{p} = \lVert \mathbf{A}^{-1} \rVert_{p} \lVert \mathbf{A}_{p} \rVert
\qquad \Rightarrow \qquad
\kappa_{2} = \lVert \mathbf{A}^{-1} \rVert_{2} \lVert \mathbf{A} \rVert_{2} = \frac{\sigma_{1}}{\sigma_{\rho}}
$$