Hint
The idea is based on Taylor series and there's several cases to treat:
$$\sqrt[p]{x^{n}+a_{n}x^{n-1}+\cdots+a_{0}}- \sqrt[q]{x^{c}+a_{t}x^{c-1}+\cdots+a_{0}}\sim_\infty x^{n/p}-x^{c/q}$$
and the case when $\frac{n}{p}-\frac{c}{q}\ne0$ is clear and gives the limit $\pm\infty$. Now we assume that $\frac{n}{p}-\frac{c}{q}=0$ then by the Taylor series:
$$\sqrt[p]{x^{n}+a_{n}x^{n-1}+\cdots+a_{0}}- \sqrt[q]{x^{c}+a_{t}x^{c-1}+\cdots+a_{0}}\sim_\infty x^{\frac np-1}\left(\frac{a_n}{p}-\frac{a_t}{q}\right)$$
and if $\frac{a_n}{p}-\frac{a_t}{q}\ne0$ then the limit depends on three cases: $\frac np-1<0, \frac np-1>0$ or $\frac np-1=0$. If $\frac{a_n}{p}-\frac{a_t}{q}=0$ then the calculus is taken again and we push the development of the Taylor series at another term and we discus the cases that depend on $p,q,a_{n-1},a_{t-1}$ and so on.