First prove the base case of $P(x)$ nonzero constant. Now for inductive step we assume $P(x)$ is a not a constant, hence $P^{\prime}(x)$ is a nonzero polynomial. By induction hypothesis any polynomial of lower degree already satisfy $\lim\limits_{x\rightarrow\infty}\frac{P(x)}{e^{x}}=0$ and $\lim\limits_{x\rightarrow-\infty}\frac{P(x)}{e^{x}}=\pm\infty$ (these inequality are stronger than the one in the question, hence more suitable for induction; once you prove them, adding in the absolute value is just 1 line)
Since $P^{\prime}(x)$ have finite root its sign will eventually be fixed so $P(x)$ is eventually monotone so $P(x)$ either diverge to $\pm\infty$ or to a finite value as $x\rightarrow\pm\infty$.
If $\lim\limits_{x\rightarrow\infty}P(x)\not=\pm\infty$ then we immediately have $\lim\limits_{x\rightarrow\infty}\frac{P(x)}{e^{x}}=\frac{\lim\limits_{x\rightarrow\infty}P(x)}{\lim\limits_{x\rightarrow\infty}e^{x}}=0$. Otherwise $\lim\limits_{x\rightarrow\infty}\frac{P(x)}{e^{x}}=\lim\limits_{x\rightarrow\infty}\frac{P^{\prime}(x)}{e^{x}}$ by L'Hospital rule, and since $P^{\prime}(x)$ have lower degree, this complete the induction step.
If $\lim\limits_{x\rightarrow-\infty}P(x)\not=0$ then we immediately have $\lim\limits_{x\rightarrow-\infty}\frac{P(x)}{e^{x}}=\frac{\lim\limits_{x\rightarrow-\infty}P(x)}{\lim\limits_{x\rightarrow-\infty}e^{x}}=\pm\infty$. Otherwise, $\lim\limits_{x\rightarrow-\infty}\frac{P(x)}{e^{x}}=\lim\limits_{x\rightarrow-\infty}\frac{P^{\prime}(x)}{e^{x}}$ by L'Hospital, and since $P^{\prime}(x)$ have lower degree, this complete the induction step.