9

The question is a by-product at the end of this post.

The following asymptotic term will ensure the convergence of some series.

$$ \frac{1}{n!} \sum_{k = 1 }^{n } \frac{{n \brack k}}{k+1} = \mathcal{O} \left(\frac{1}{\ln n}\right), \quad \text{as} \quad n \rightarrow \infty. $$

Here $\displaystyle {n \brack k}$ are the unsigned Stirling numbers of the first kind.

Can you find a proof for it?

Update: A related interesting paper may be found here.

Olivier Oloa
  • 120,989
  • 1
    I was able to write the sum as an integral of the reciprocal beta function: $\frac{1}{n!}\sum_{k=1}^{n}\frac{{n\brack k}}{k+1}=\frac{1}{n}\int_{0}^{1}\frac{1}{\operatorname{B}{(x,n)}},\mathrm{d}x$. I don't know much about asymptotics, but perhaps this identity will be useful to someone who does. – David H Jul 20 '14 at 04:35
  • @DavidH, that seems promising. If the asymptotic $B(x,n) \sim n^{-x} \Gamma(x)$ holds uniformly for $x \in [0,1]$ then $$\begin{align} \frac{1}{n} \int_0^1 \frac{dx}{B(x,n)} &\sim \frac{1}{n} \int_0^1 \frac{n^x}{\Gamma(x)},dx \ &\sim \frac{1}{n} \frac{n}{\Gamma(1) \log n} \ &= \frac{1}{\log n} \end{align}$$ follows. – Antonio Vargas Jul 20 '14 at 07:24
  • I didn't see this until after I computed the asymptotic expansion for this answer. I guess this would be a good place to put the derivation. – robjohn Feb 19 '15 at 16:29

5 Answers5

5

Consider the following:

$$\begin{align} \frac{1}{n!}\sum_{k=1}^{n}\frac{{n\brack k}}{k+1} &\stackrel{\color{red}{[1]}}=\frac{1}{n!}\sum_{k=0}^{n}\frac{{n\brack k}}{k+1}\\ &=\frac{1}{n!}\sum_{k=0}^{n}{n\brack k}\int_{0}^{1}x^k\,\mathrm{d}x\\ &=\frac{1}{n!}\int_{0}^{1}\left(\sum_{k=0}^{n}{n\brack k}x^k\right)\,\mathrm{d}x\\ &\stackrel{\color{red}{[2]}}=\frac{1}{n!}\int_{0}^{1}(x)^{(n)}\,\mathrm{d}x\\ &=\frac{1}{n!}\int_{0}^{1}\frac{\Gamma{(x+n)}}{\Gamma{(x)}}\,\mathrm{d}x\\ &=\frac{1}{n}\int_{0}^{1}\frac{\Gamma{(x+n)}}{\Gamma{(x)}\,\Gamma{(n)}}\,\mathrm{d}x\\ &=\frac{1}{n}\int_{0}^{1}\frac{1}{\operatorname{B}{(x,n)}}\,\mathrm{d}x\\ &\stackrel{\color{red}{[3]}}\sim\frac{1}{n}\int_{0}^{1}\frac{1}{\Gamma{(x)}\,n^{-x}}\,\mathrm{d}x\\ &=\int_{0}^{1}\frac{n^{x-1}}{\Gamma{(x)}}\,\mathrm{d}x\\ &\approx\int_{0}^{1}x\,n^{x-1}\,\mathrm{d}x\\ &=\frac{n\ln{n}-n+1}{n\ln^2{n}}\\ &=\frac{1}{\ln{n}}+\frac{\frac{1}{n}-1}{\ln^2{n}} \end{align}$$


Notes:

$\color{red}{[1]}\;\;\;$ For all natural numbers $n>0$, the unsigned Stirling numbers of the first kind satisfy the condition ${n\brack 0}=0$.

$\color{red}{[2]}\;\;\;$ The unsigned Stirling numbers of the first kind arise as coefficients of the rising factorial:

$$(x)^{(n)}=x(x+1)\cdots(x+n-1)=\sum_{k=0}^{n}{n\brack k}x^k.$$

$\color{red}{[3]}\;\;\;$ For large $n$ ($x$ is fixed), Stirling's appproximation gives the asymptotic formula

$$\operatorname{B}{(x,n)}\sim \Gamma{(x)}\,n^{-x}.$$

David H
  • 29,921
  • I still think $[3]$ requires some justification. The formula $B(x,n) \sim \Gamma(x) n^{-x}$ holds for fixed $x$, but it needs to hold uniformly for $x \in [0,1]$ in order to conclude that $\int_0^1 dx/B(x,n) \sim \int_0^1 n^x/\Gamma(x)x,dx$. In other words, we need $\lim_{n \to \infty} \frac{n^{-x}\Gamma(x)}{B(x,n)} = 1$ uniformly for $x \in [0,1]$. – Antonio Vargas Jul 20 '14 at 16:29
  • @AntonioVargas You're probably right. I'm now thinking it would be easier to just prove the inequality $B(x,n) \ge \Gamma(x) n^{-x}$ for $x \in [0,1]$ and $n>2$, and use that to prove $\int_0^1 dx/B(x,n) \le \int_0^1 n^x/\Gamma(x)x,dx$. – David H Jul 20 '14 at 17:00
5

For me, the demonstration by David H has some problems. How can you justify this approximation $$\int_0^1\frac{n^{x-1}}{\Gamma(x)} \, dx \approx \int_0^1 x\, n^{x-1} \, dx$$ ? What's the reason to take only the first term in the expansion of $\Gamma^{-1}(x)$? To illustrate the point, I remark that $$\frac{1}{\Gamma(x)} = x+ \gamma x^2 + O(x^3)$$ and hence, if we take only the first term, we arrive at the David's result. But if we take into account the second term as well, the result will be different: $$\int_0^1 (x+ \gamma x^2)\, n^{x-1} \, dx = \frac{\ln n-2\gamma-n\ln n +2\gamma n +n\ln^2 n-2n\gamma\ln n +n\gamma \ln^2 n}{n\ln^3 n}\sim\frac{1+\gamma}{\ln n}$$ for large $n$. Taking into account more terms in the expansion for $\Gamma^{-1}(x)$ makes the divergence more visible.

So, I would like to propose another demonstration, which does not provide the exact result, but gives a good upper bound. In fact $$\int_0^1\frac{n^{x-1}}{\Gamma(x)} \, dx \leqslant \max\limits_{[0,1]}\frac{1}{\Gamma(x)}\cdot\int_0^1 n^{x-1} \, dx = \int_0^1 n^{x-1} \, dx = \frac{n-1}{n\ln n}\sim\frac{1}{\ln n}$$ as $n\to\infty$. Numerical simulations show that the ratio between $\ln^{-1} n$ and the first integral on the left tends to $1^{+}$ as $n\to\infty$.

  • 2
    I agree, there are some issues with that. This particular asymptotic can be proved rigorously using Watson's lemma. – Antonio Vargas Aug 07 '14 at 21:47
  • 1
    @Iaroslav Blagouchine I understand your issue. – Olivier Oloa Aug 07 '14 at 22:26
  • @Antonio Vargas Thank you! Finally, I found a rigorous proof, which does not make use of the Watson's lemma (see my post below). However, it would be also interesting to see the proof using this lemma. – Iaroslav Blagouchine Aug 08 '14 at 10:21
  • 1
    @IaroslavBlagouchine, Basically you would proceed like $$\int_0^1 \frac{n^x}{\Gamma(x)},dx = \int_0^1 \Gamma(x)^{-1} e^{x \log n},dx = n \int_0^1 \Gamma(1-t)^{-1} e^{-t\log n},dt$$ and apply the lemma to the last integral, taking $T=1$, $\lambda=0$, $g(t)=\Gamma(1−t)^{−1}$, and $x=\log n$ in the statement on the wiki page. – Antonio Vargas Aug 08 '14 at 15:59
3

I computed this asymptotic expansion for this answer. To relate the two, we will use $$ \newcommand{\stirone}[2]{\left[{#1}\atop{#2}\right]} \sum_{k=0}^n\stirone{n}{k}x^k=\frac{\Gamma(x+n)}{\Gamma(x)}\tag{1} $$ Integrating $(1)$ on $[0,1]$ and dividing by $n!=\Gamma(n+1)$ gives $$ \frac1{n!}\sum_{k=0}^n\frac{\stirone{n}{k}}{k+1} =\int_0^1\frac{\Gamma(n+x)}{\Gamma(n+1)\Gamma(x)}\mathrm{d}x\tag{2} $$ For $x\in[0,1]$, Gautschi's Inequality says $$ (n+1)^{x-1}\le\frac{\Gamma(n+x)}{\Gamma(n+1)}\le n^{x-1}\tag{3} $$ Dividing $(3)$ by $\Gamma(x)$ and integrating on $[0,1]$ gives $$ \int_0^1\frac{(n+1)^{x-1}}{\Gamma(x)}\mathrm{d}x \le\int_0^1\frac{\Gamma(n+x)}{\Gamma(n+1)\Gamma(x)}\mathrm{d}x \le\int_0^1\frac{n^{x-1}}{\Gamma(x)}\mathrm{d}x\tag{4} $$ Substituting $x\mapsto1-x$, we get the asymptotic expansion $$ \begin{align} \int_0^1\frac{n^{x-1}}{\Gamma(x)}\mathrm{d}x &=\int_0^1\frac{n^{-x}}{\Gamma(1-x)}\mathrm{d}x\\ &=\int_0^1\left(1-\gamma x-\left(\tfrac{\pi^2}{12}-\tfrac{\gamma^2}2\right)x^2+O\left(x^3\right)\right)e^{-x\log(n)}\,\mathrm{d}x\\ &=\frac1{\log(n)}-\frac\gamma{\log(n)^2}-\frac{\frac{\pi^2}6-\gamma^2}{\log(n)^3}+O\left(\frac1{\log(n)^4}\right)\tag{5} \end{align} $$ Since the difference between $(5)$ for $n$ and $n+1$ is $O\left(\frac1n\right)$, $(4)$ says we have $$ \int_0^1\frac{\Gamma(n+x)}{\Gamma(n+1)\Gamma(x)}\mathrm{d}x=\frac1{\log(n)}-\frac\gamma{\log(n)^2}-\frac{\frac{\pi^2}6-\gamma^2}{\log(n)^3}+O\left(\frac1{\log(n)^4}\right)\tag{6} $$

robjohn
  • 345,667
3

We have:

$$\sum_{k=0}^n {n\brack k}x^k=x(x+1)\cdots(x+n-1)$$ (See Comtet, Advanced combinatorics) and $$u_n=\frac{1}{n!} \sum_{k = 1 }^{n } \frac{{n \brack k}}{k+1}=\int_0^1\frac{t(t+1)\cdots (t+n-1)}{n!} dt$$

Now we have $\exp(-x)\geq 1-x$ for $x\geq 0$. Hence for $t\in [0,1]$ we have $$\frac{t(t+1)\cdots (t+n-1)}{n!}=t\prod_{k=1}^{n-1} (1-\frac{1-t}{k+1})\leq t\exp(-v_n (1-t))$$ where $1+v_n=1+\frac{1}{2}+\cdots+\frac{1}{n}$.

Hence $$u_n\leq \int_0^1 t\exp(-v_n (1-t))=\frac{1}{v_n}-\frac{1-\exp(-v_n)}{v_n^2}\leq \frac{1}{v_n}$$

As $v_n\sim \log n$, we are done.

Kelenner
  • 18,734
  • 26
  • 36
3

I've just found a rigorous proof. All the ingredients were already there. I consider again expansion $$\frac{1}{\Gamma(x)}=x+\gamma x^2+\ldots=\sum_{k=1}^\infty x^k a_k$$ whose coefficients are denoted by $a_k$ for brevity. Now, it can be remarked that for positive integer $k$ and for large $n$ $$\int_0^1 n^{x-1} x^k \, dx\sim\frac{1}{\ln n}$$ Thus, in virtue of the uniform convergence, we have $$\int_0^1\frac{n^{x-1}}{\Gamma(x)} \, dx = \sum_{k=1}^\infty a_k \int_0^1 n^{x-1}x^k \sim \frac{1}{\ln n} \underbrace{\sum_{k=1}^\infty a_k}_{\Gamma^{-1}(1)}=\frac{1}{\ln n}\,,\qquad \text{as }\; n\to\infty$$ Moreover, by extending the above method to higher-order terms, one may obtain a more accurate asymptotics
$$\frac{1}{n!}\sum_{k=1}^n\frac{\left[{n \atop k}\right]}{k+1}\,=\,\frac{1}{\,\ln n\,} - \frac{\gamma}{\,\ln^2 \!n\,} +\frac{\,6\gamma^2-\pi^2\,}{\,6\ln^3 \!n\,} + O\!\left(\frac{1}{\,\ln^4\!n\,}\right)\,,\qquad \text{as }\; n\to\infty$$ The details of the derivation, as well similar asymptotics for general terms in series with rational coefficients for $\ln^{-1}\!2$, $\ln^{-2}\!2$ and for the Euler's constant $\gamma$, may be found in my recent work (this particular asymptotics is treated in Appendix)

  • 1
    I'm OK with your proof (please the notation $\Gamma^{-1}(1)$ is ambiguous). Yes all the ingredients were already there. Thanks! – Olivier Oloa Aug 08 '14 at 09:07
  • Not at all! PS: sorry for the notation, I always use $^{-1}$ for the power and the prefix $\mathrm{arc}$ for the compositional inverse (although, for $\Gamma^{-1}(1)$ both quantities coincide!). – Iaroslav Blagouchine Aug 08 '14 at 10:10
  • @Olivier Oloa I'm interested in the advanced literature devoted to Stirling numbers and to their applications in analysis. Could you recommend me something? – Iaroslav Blagouchine Aug 09 '14 at 22:29
  • This is an interesting subject. Could you give me your email? It would be easier. – Olivier Oloa Aug 10 '14 at 20:07
  • @Olivier Oloa iaroslav.blagouchine arobase univ-tln.fr (vous pouvez m'écrire en français, ça sera plus simple). Un grand merci d'avance!! – Iaroslav Blagouchine Aug 10 '14 at 22:21