Sum the Integrands
We can use the identity
$$
\frac{(1+i)i^n+(1-i)(-i)^n}2=(-1)^{\frac{n(n+1)}2}\tag{1}
$$
to get
$$
\begin{align}
&\sum_{n=0}^\infty(-1)^{\frac{n(n+1)}2}\frac{x(x+1)\cdots(x+n-1)}{n!}\\
&=\sum_{n=0}^\infty\frac{(1+i)i^n+(1-i)(-i)^n}2\binom{n+x-1}{n}\tag{2a}\\
&=\sum_{n=0}^\infty\frac{(1+i)(-i)^n+(1-i)i^n}2\binom{-x}{n}\tag{2b}\\
&=\frac{1+i}2(1-i)^{-x}+\frac{1-i}2(1+i)^{-x}\tag{2c}\\
&=\frac{1+i}22^{-x/2}e^{i\pi x/4}+\frac{1-i}22^{-x/2}e^{-i\pi x/4}\tag{2d}\\[4pt]
&=2^{-(x+1)/2}e^{i\pi(x+1)/4}+2^{-(x+1)/2}e^{-i\pi(x+1)/4}\tag{2e}\\[8pt]
&=2^{-(x-1)/2}\cos(\pi(x+1)/4)\tag{2f}\\[8pt]
&=2^{(1-x)/2}\sin(\pi(1-x)/4)\tag{2g}
\end{align}
$$
Explanation:
$\text{(2a)}$: apply $(1)$
$\text{(2b)}$: $\binom{-x}{n}=(-1)^n\binom{n+x-1}{n}$
$\text{(2c)}$: apply Binomial Theorem
$\text{(2d)}$: convert to polar form
$\text{(2e)}$: algebra
$\text{(2f)}$: convert to trig form
$\text{(2g)}$: $\cos(\pi(x+1)/4)=-\sin(\pi(x-1)/4)$
Integrate the Sum
Note that we included the $n=0$ term, which is $1$, in $(2)$. We simply need to integrate $(2)$ over $[0,1]$ and subtract the contribution from the $n=0$ term, which is $1$.
$$
\begin{align}
&\int_0^12^{(1-x)/2}\sin(\pi(1-x)/4)\,\mathrm{d}x-1\\
&=\int_0^12^{x/2}\sin(\pi x/4)\,\mathrm{d}x-1\\
&=\mathrm{Im}\!\left(\int_0^1e^{(\log(2)/2+i\pi/4)x}\,\mathrm{d}x\right)-1\\
&=\mathrm{Im}\!\left(\frac{i}{\log(2)/2+i\pi/4}\right)-1\\
&=\bbox[5px,border:2px solid #C00000]{\frac{8\log(2)}{4\log(2)^2+\pi^2}-1}\\[3pt]
&\doteq-0.52972762307114482514\tag{3}
\end{align}
$$
This agrees with Olivier Oloa's result.
Changing the Order
Using the log-convexity of $\Gamma(x)$ and the first few terms of the power series for $\Gamma(x)$ near $x=1$, it is shown in this answer that
$$
\frac1{n!}\int_0^1\frac{\Gamma(x+n)}{\Gamma(x)}\,\mathrm{d}x
\sim\frac1{\log(n)}-\frac\gamma{\log(n)^2}-\frac{\frac{\pi^2}6-\gamma^2}{\log(n)^3}+O\left(\frac1{\log(n)^4}\right)\tag{4}
$$
This means that the terms in
$$
\sum_{n=1}^\infty(-1)^{n(n+1)/2}\frac1{n!}\int_0^1\frac{\Gamma(x+n)}{\Gamma(x)}\mathrm{d}x\tag{5}
$$
converge very slowly. Given this, it is reasonable to question the change of order between integration and summation.
However, we are allowed to change the order of a finite sum and integration, and therefore, we can consider the sum grouped into fours.
Since $(-1)^{n(n+1)/2}$, starting at $n=1$, follows the pattern $-1,-1,+1,+1,\dots$, and the absolute values of the terms are monotonically decreasing, the sum of each group of four terms is negative. Since the sum converges, it converges absolutely. Now we can apply Fubini's Theorem to allow us to switch the order of summation (integration on a discrete space) and integration.