First off, please excuse my n00bishness I have only just begun learning about algebraic manipulation of limits so this is probably a really dumb or obvious question.
I'm trying to solve the following limit:
$$ \lim_{x\to\pi/6}\frac{1 - 2\sin{x}}{2\sqrt{3}\cos{x} - 3} $$ This limit is $0/0$ if evaluated directly, so I tried multiplying by the conjugate of the denominator:
$$ \begin{align} & = \lim_{x\to\pi/6}\frac{(1 - 2\sin{x})(2\sqrt{3}\cos{x} + 3)}{(2\sqrt{3}\cos{x} - 3)(2\sqrt{3}\cos{x} + 3)}\\ & = \lim_{x\to\pi/6}\frac{(2\sin{x} - 1)(2\sqrt{3}\cos{x} - 3)}{(2\sqrt{3}\cos{x} - 3)(2\sqrt{3}\cos{3} + 3)} \\ & = \lim_{x\to\pi/6}\frac{2\sin{x} - 1}{2\sqrt{3}\cos{x} + 3}\\ & = \frac{2(1/2) - 1}{2\sqrt{3}\frac{\sqrt{3}}{2} + 3}\\ & = \frac{0}{6}\\ & = 0 \end{align} $$
But according to WolframAlpha this is incorrect, and the limit should be 1. What have I done wrong?
Also, as I have only just begun I am unfamiliar with L'Hopital's rule.