2

In looking at the corresponding graph and differentiating it after reducing it to a different form, I know the that limit is equal to $2$ but I am unsure as to how I can show this algebraically. Any hints would be appreciated.

$$\lim_{x \rightarrow \pi/4} \frac{1-\tan x }{1-\sqrt2 \, \sin x}$$

4 Answers4

3

$$\lim_{x\to\dfrac\pi4}\frac{1-\tan x}{1-\sqrt2\sin x}$$

$$=\lim_{x\to\dfrac\pi4}\frac{\cos x-\sin x}{1-\sqrt2\sin x}\cdot\frac1{\lim_{x\to\dfrac\pi4}(\cos x)}$$

$$=\lim_{x\to\dfrac\pi4}\frac{(\cos x-\sin x)(\cos x+\sin x)}{(1-\sqrt2\sin x)(1+\sqrt2\sin x)}\cdot\lim_{x\to\dfrac\pi4}\frac{(1+\sqrt2\sin x)}{(\cos x+\sin x)}\cdot\frac1{\dfrac1{\sqrt2}}$$

$$=\lim_{x\to\dfrac\pi4}\frac{\cos2x}{\cos2x}\cdot\lim_{x\to\dfrac\pi4}\frac{(1+\sqrt2\sin x)}{(\cos x+\sin x)}\cdot\sqrt2$$

as $\displaystyle(\cos x-\sin x)(\cos x+\sin x)=\cos^2x-\sin^2x=\cos2x$

and $\displaystyle(1-\sqrt2\sin x)(1+\sqrt2\sin x)=1-2\sin^2x=\cos2x$

and as $\displaystyle x\to\dfrac\pi4,x\ne\dfrac\pi4,\cos2x\ne0$

2

$$\lim_{x\to\dfrac\pi4}\frac{1-\tan x}{1-\sqrt2\sin x}$$

$$=\frac1{\sqrt2}\lim_{x\to\dfrac\pi4}\frac{\tan x-1}{\sin x-\dfrac1{\sqrt2}}$$

$$=\frac1{\sqrt2}\frac{\lim_{x\to\dfrac\pi4}\left(\dfrac{\tan x-\tan\dfrac\pi4}{x-\dfrac\pi4}\right)}{\lim_{x\to\dfrac\pi4}\left(\dfrac{\sin x-\sin\dfrac\pi4}{x-\dfrac\pi4}\right)}$$

$$=\frac1{\sqrt2}\cdot\frac{\dfrac{d(\tan x)}{dx}_{\left(\text{ at } x=\dfrac\pi4\right)}}{\dfrac{d(\sin x)}{dx}_{\left(\text{ at } x=\dfrac\pi4\right)}}$$

2

Following orion's way, I will set $\displaystyle\frac\pi4-x=2y$

$$\lim_{x\to\dfrac\pi4}\frac{1-\tan x}{1-\sqrt2\sin x}$$

$$=\lim_{y\to0}\frac{1-\tan\left(\dfrac\pi4-2y\right)}{1-\sqrt2\sin\left(\dfrac\pi4-2y\right)}$$

$$=\lim_{y\to0}\frac{1-\dfrac{1-\tan2y}{1+\tan2y}}{1-(\cos2y-\sin2y)}$$

Using double angle formula this becomes,

$$2\frac1{\lim_{y\to0}(1+\tan2y)\cos2y}\cdot 2\lim_{y\to0}\frac{\sin2y}{2y}\frac1{\lim_{y\to0}\dfrac{\sin y}y} \cdot\frac1{\lim_{y\to0}(\sin y+\cos y)}$$

Observe that all the limits reduce to $1$

1

First, convert it to limit around zero with: $$y=x-\frac{\pi}{4}$$ Expand all trigonometric functions with addition theorems. Things will become more obvious then. You can then use l'Hospital, further trigonometric manipulations to cancel things out, or just simple Taylor expansion.

EDIT:

$$\lim_{y\to 0}\frac{1-\tan(y+\pi/4)}{1-\sqrt{2}\sin(y+\pi/4)}$$ $$=\lim_{y\to 0}\frac{1-\frac{\tan y+\tan \pi/4}{1-\tan y \tan \pi/4}}{1-\sqrt{2}(\sin y\cos \frac{\pi}{4}+\cos y \sin{\frac{\pi}{4}})}$$ $$=\lim_{y\to 0}\frac{1-\frac{1+\tan y}{1-\tan y}}{1-(\sin y+\cos y)}$$ $$=\lim_{y\to 0}\frac{-2\tan y}{({1-\tan y})(1-(\sin y+\cos y))}$$ $$=\lim_{y\to 0}\frac{-2\tan y}{1-\sin y -\cos y-\tan y+(\sin^2 y/\cos y)+\sin y}$$ Multiply by cosine on both sides $$=\lim_{y\to 0}\frac{-2\sin y}{1+\cos y -2\cos^2 y-\sin y}$$ You can solve this with l'Hospital now: $$=\lim_{y\to 0}\frac{-2\cos y}{-\sin y -4\cos y\sin y-\cos y}=2$$

I oversimplified on purpose - you could do that a few lines earler. But it's nice to have it in this form in case you want to apply other methods (especially the Taylor approach).

orion
  • 15,781
  • I tried to convert the limit to lim h->0 so :(pi/4+h) and expanded it but i cant get to the form where i can subsitute h=0 and get the result=2 . I also want to prove it algebraically so i cant use l'hospital rule – questioner Mar 23 '14 at 09:23
  • I solved it using L'hospital rule too but i wanted to find a way to solve it using trig identities only without l'hospital – questioner Mar 23 '14 at 10:13
  • In that case, translate everything to the new variable of $t=\tan y/2$ and use http://en.wikipedia.org/wiki/Tangent_half-angle_formula to make this limit a rational function. – orion Mar 23 '14 at 10:17
  • alright ill try that out too – questioner Mar 23 '14 at 10:51