$\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}
\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
Note that
\begin{align}
H_{n}&=\int_{0}^{1}{1 - t^{n} \over 1 - t}\,\dd t
=-n\int_{0}^{1}\ln\pars{1 - t}t^{n - 1}\,\dd t
\end{align}
where we integrated by parts.
Then,
\begin{align}
&\bbox[10px,#ffd]{\sum_{n = 1}^{\infty}
\pars{-1}^{n - 1}\,{H_{n} \over n}} =
-\int_{0}^{1}\ln\pars{1 - t}
\sum_{n = 1}^{\infty}\pars{-t}^{n - 1}\,\dd t
\\[5mm] = &\
-\int_{0}^{1}{\ln\pars{1 - t} \over 1 + t}\,\dd t =
-\int_{0}^{1}{\ln\pars{t} \over 2 - t}\,\dd t
=-\int_{0}^{1/2}{\ln\pars{2t} \over 1 - t}\,\dd t
\\[5mm] = &\
-\int_{0}^{1/2}{\ln\pars{1 - t} \over t}\,\dd t =
\int_{0}^{1/2}{{\rm Li}_{1}\pars{t} \over t}\,\dd t
=\int_{0}^{1/2}{\rm Li}_{2}'\pars{t}\,\dd t
\\[5mm] = &\ {\rm Li}_{2}\pars{\half} =
\bbox[10px,border:1px groove navy]
{{\pi^{2} \over 12} - \half\,\ln^{2}\pars{2}}
\approx 0.5822
\end{align}
$\large\mbox{See this link}$.