$\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}
\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\sum_{n = 1}^{\infty}{n + 1 \over 2^{n}\,n^{2}}:\ {\large ?}}$
\begin{align}&\color{#c00000}{%
\sum_{n = 1}^{\infty}{n + 1 \over 2^{n}\,n^{2}}}
=\sum_{n = 1}^{\infty}{\pars{1/2}^{n} \over n}
+\sum_{n = 1}^{\infty}{\pars{1/2}^{n} \over n^{2}}
={\rm Li}_{1}\pars{\half} + {\rm Li}_{2}\pars{\half}
\end{align}
where
$\ds{{\rm Li_{s}}\pars{z} \equiv \sum_{k = 1}^{\infty}{z^{k} \over k^{\rm s}}}$
is the
PolyLogarithm Function.
However:
$$
{\rm Li}_{1}\pars{\half} = \ln\pars{2}\qquad\mbox{and}\qquad
{\rm Li}_{2}\pars{\half} = {\pi^{2} \over 12} - \half\,\ln^{2}\pars{2}
$$
$$\color{#00f}{\large%
\sum_{n = 1}^{\infty}{n + 1 \over 2^{n}\,n^{2}}
={\pi^{2} \over 12} + \ln\pars{2} - \half\,\ln^{2}\pars{2}}\approx 1.2754
$$