As $\displaystyle189=27\cdot7, x\equiv39\pmod{189}\implies x\equiv39\pmod7\equiv4$ and $x\equiv39\pmod{27}\equiv12$
As $\displaystyle1089=9\cdot121, x\equiv39\pmod{1089}\implies x\equiv39\pmod9\equiv3$ and $x\equiv39\pmod{121}$
As $\displaystyle539=49\cdot11,x\equiv25\pmod{1089}\implies x\equiv25\pmod{11}\equiv3$ and $x\equiv25\pmod{49}$
Now, $\displaystyle x\equiv3\pmod9$ is a subset of $x\equiv39\pmod{27}\equiv12\implies x\equiv12\pmod9\equiv3$
and $\displaystyle x\equiv4\pmod7$ is a subset of $x\equiv25\pmod{49}\implies x\equiv25\pmod7\equiv4$
But $\displaystyle x\equiv3\pmod{11}$ contradicts $\displaystyle x\equiv39\pmod{121}\implies x\equiv39\pmod{11}\equiv6\not\equiv3\pmod{11}$