This answer address the "unsolved" problem regarding the proof of the "propositional part" of the question, using an Hilbert-style proof system (with Natural Deduction, the proof is quite easy, and has been already provided).
The list at page 13 of M.J.Cresswell & G.E.Hughes, A New Introduction to Modal Logic (1966) is significantly called a "list [of] valid PC wff"; we are not sure that they form a complete axiom system for PC (i.e. that they are enough to prove all tautologies).
In order to prove the formula :
$((a→b)∧(a∧c))→(b∧c)$
we need a complete Hilbert-style axiom system; I'll use that of Elliott Mendelson, Introduction to Mathematical Logic (4th ed - 1997), based on the following three axioms :
(A1) $\mathcal{B} \rightarrow ( \mathcal{C} \rightarrow \mathcal{B})$
(A2) $(\mathcal{B} \rightarrow ( \mathcal{C} \rightarrow \mathcal{D})) \rightarrow ((\mathcal{B} \rightarrow \mathcal{C}) \rightarrow (\mathcal{B} \rightarrow \mathcal{D}))$
(A3) $(\lnot \mathcal{C} \rightarrow \lnot \mathcal{B}) \rightarrow ((\lnot \mathcal{C} \rightarrow \mathcal{B}) \rightarrow \mathcal{C})$
and modus ponens as only rule of inference.
The symbol $\land$ for conjunction is not primitive; it is defined as :
$\mathcal{B} \land \mathcal{C} =_{def} \lnot (\mathcal{B} \rightarrow \lnot \mathcal{C})$.
In order to prove our formula, we need some preliminary Lemmas; you can find the proof in Mendelson's book [for some of them, see this post].
Lemma 1.8 [page 36] :
$\vdash \mathcal{B} \rightarrow \mathcal{B}$.
We need only (A1) and (A2) to prove it.
With Lemma 1.8 and using only (A1) and (A2) it is possible to prove the Deduction Theorem [Prop 1.9, page 37]:
if $\Gamma, \mathcal{B} \vdash \mathcal{C}$, then $\Gamma \vdash \mathcal{B} \rightarrow \mathcal{C}$.
With the Deduction Th it is easy to prove :
Corollary 1.10(a) [page 38] :
$\mathcal{B} \rightarrow \mathcal{C}, \mathcal{C} \rightarrow \mathcal{D} \vdash \mathcal{B} \rightarrow \mathcal{D}$.
Then Mendelson proves Lemma 1.11.(a)-(e)
$\vdash \lnot \lnot \mathcal B \rightarrow \mathcal B$
$\vdash \mathcal B \rightarrow \lnot \lnot \mathcal B$
$\vdash \lnot \mathcal B \rightarrow (\mathcal B \rightarrow \mathcal C)$
$\vdash (\lnot \mathcal C \rightarrow \lnot \mathcal B) \rightarrow (\mathcal B \rightarrow \mathcal C)$
$\vdash (\mathcal B \rightarrow \mathcal C) \rightarrow (\lnot \mathcal C \rightarrow \lnot \mathcal B)$.
We can easily derive from Lemma 1.11.(e) :
Lemma A : $\vdash (\mathcal B \rightarrow \lnot \mathcal C) \rightarrow (\mathcal C \rightarrow \lnot \mathcal B)$.
Proof
(i) $\mathcal B \rightarrow \lnot \mathcal C \vdash \lnot \lnot \mathcal C \rightarrow \lnot \mathcal B$ --- from Lemma 1.11.(e) with $\lnot \mathcal C$ in place of $\mathcal C$, by mp
(ii) $\mathcal B \rightarrow \lnot \mathcal C \vdash \mathcal C \rightarrow \lnot \mathcal B$ --- from (i) and Lemma 1.11(b) with Coroll.1.10(a)
(iii) $\vdash (\mathcal B \rightarrow \lnot \mathcal C) \rightarrow (\mathcal C \rightarrow \lnot \mathcal B)$ --- from (ii) by DT.
Now we need the equivalent of $\land$-introduction and -elimination rules; we have to derive them using the abbreviation for $\land$.
Lemma B : $\vdash (\mathcal B \land \mathcal C) \rightarrow \mathcal B$.
Proof
(i) $\vdash \lnot \mathcal B \rightarrow (\mathcal B \rightarrow \lnot \mathcal C)$ --- Lemma 1:11(c)
(ii) $\vdash \lnot (\mathcal B \rightarrow \mathcal \lnot C) \rightarrow \lnot \lnot \mathcal B $ --- from (i) and Lemma 1.11(e) by mp
(iii) $\vdash \lnot (\mathcal B \rightarrow \mathcal \lnot C) \rightarrow \mathcal B $ --- from (ii) and Lemma 1.11(a) by Coroll.1.10(a)
(iv) $\vdash (\mathcal B \land \mathcal C) \rightarrow \mathcal B $ --- from (iii) by def of $\land$.
Lemma C : $\vdash (\mathcal B \land \mathcal C) \rightarrow \mathcal C$.
Proof
(i) $\vdash \lnot \mathcal C \rightarrow (\mathcal B \rightarrow \lnot C)$ --- (A1)
(ii) $\vdash \lnot (\mathcal B \rightarrow \lnot C) \rightarrow \lnot \lnot C$ --- from (i) and Lemma 1.11(e) by mp
(iii) $\vdash \lnot (\mathcal B \rightarrow \lnot C) \rightarrow C$ --- from (ii) and Lemma 1.11(a) by Coroll.1.10(a)
iv) $\vdash (\mathcal B \land C) \rightarrow C$ --- from (iii) by def of $\land$.
Now we prove :
Lemma D : $\vdash \mathcal B \rightarrow ( \mathcal C \rightarrow (\mathcal B \land \mathcal C))$.
Proof
(i) $\mathcal B, \mathcal B \rightarrow \lnot \mathcal C \vdash \mathcal \lnot C$ --- by mp
(ii) $\mathcal B \vdash (\mathcal B \rightarrow \lnot \mathcal C) \rightarrow \mathcal \lnot C$ --- from (i) by DT
(iii) $\mathcal B \vdash \mathcal C \rightarrow \lnot (\mathcal B \rightarrow \lnot \mathcal C)$ --- from (ii) and Lemma A by mp
(iv) $\vdash \mathcal B \rightarrow (\mathcal C \rightarrow \lnot (\mathcal B \rightarrow \lnot \mathcal C))$ --- from (iii) by DT
(v) $\vdash \mathcal B \rightarrow ( \mathcal C \rightarrow (\mathcal B \land \mathcal C))$ --- from (iv) def of $\land$.
We prove :
Lemma E : $\mathcal B \rightarrow ( \mathcal C \rightarrow \mathcal D) \vdash (\mathcal B \land \mathcal C) \rightarrow \mathcal D$.
Proof
(i) $\mathcal B \rightarrow ( \mathcal C \rightarrow \mathcal D)$ --- assumed
(ii) $\mathcal B \land \mathcal C$ --- assumed
(iii) $\mathcal B$ --- from (ii) by Lemma B
(iv) $\mathcal C \rightarrow \mathcal D$ --- from (i) and (iii) by mp
(v) $\mathcal C$ --- from (ii) by Lemma C
(vi) $\mathcal D$ --- from (iv) and (v) by mp
(vii) $\mathcal B \rightarrow ( \mathcal C \rightarrow \mathcal D) \vdash (\mathcal B \land \mathcal C) \rightarrow \mathcal D$ --- from (i) and (vi) by DT.
Now our last preliminary Lemma:
Lemma F : $\vdash (\mathcal B \land \mathcal C) \rightarrow (\mathcal C \land \mathcal B)$.
Proof
(i) $\mathcal B \land C$ --- assumed
(ii) $\mathcal B$ --- from (i) by Lemma B
(iii) $\mathcal C$ --- from (i) by Lemma C
(iv) $\vdash \mathcal C \rightarrow ( \mathcal B \rightarrow (\mathcal C \land \mathcal B))$ --- Lemma D
(v) $\mathcal C \land \mathcal B$ --- from (iii), (ii) and (iv) by mp twice
(vi) $\vdash (\mathcal B \land \mathcal C) \rightarrow (\mathcal C \land \mathcal B)$ --- from (i) and (v) by DT.
Now that we have in place all needed "tools", we can proceed with the proof of our theorem.
Main proof
(i) $\mathcal A \rightarrow \mathcal B, \mathcal B \rightarrow \mathcal \lnot C \vdash \mathcal A \rightarrow \mathcal \lnot C$ --- from Coroll.1.10(a)
(ii) $\mathcal A \rightarrow \mathcal B, \mathcal C \rightarrow \mathcal \lnot B \vdash \mathcal C \rightarrow \lnot \mathcal A$ --- from (i) by Lemma A and Coroll.1.10(a) twice
(iii) $\mathcal A \rightarrow \mathcal B \vdash (\mathcal C \rightarrow \mathcal \lnot B) \rightarrow (\mathcal C \rightarrow \lnot \mathcal A)$ --- from (ii) by DT
(iv) $\mathcal A \rightarrow \mathcal B \vdash \lnot (\mathcal C \rightarrow \lnot \mathcal A) \rightarrow \lnot (\mathcal C \rightarrow \mathcal \lnot B)$ --- from (iii) and Lemma 1.11(e) by mp
(v) $\mathcal A \rightarrow \mathcal B \vdash (\mathcal C \land \mathcal A) \rightarrow (\mathcal C \land \mathcal B)$ --- from (iv) by def of $\land$
(vi) $\vdash (\mathcal A \rightarrow \mathcal B) \rightarrow ((\mathcal C \land \mathcal A) \rightarrow (\mathcal C \land \mathcal B))$ --- from (v) by DT
(vii) $\vdash (\mathcal A \rightarrow \mathcal B) \rightarrow ((\mathcal A \land \mathcal C) \rightarrow (\mathcal B \land \mathcal C))$ --- from (vi) and Lemma F by Coroll 1.10(a) twice
(viii) $\vdash ((\mathcal A \rightarrow \mathcal B) \land (\mathcal A \land \mathcal C)) \rightarrow (\mathcal B \land \mathcal C)$ --- from (vii) by Lemma E.
Comment
It is of interest to compare the above system with J.Barkley Rosser, Logic for Mathematicians (1953 - Dover reprint).
The system has $\lnot$ and $\land$ as primitive and $\supset$ is defined through [see page 15] :
$P \supset Q =_{def}\lnot (P \land \lnot Q)$.
The axioms are [see page 56 - using the abbreviation] :
1) $\quad P \supset (P \land P)$
2) $\quad (P \land Q) \supset P$
3) $\quad (P \supset Q) \supset (\lnot (Q \land R) \supset \lnot (R \land P) )$
while modus ponens is the only rule of inference.
In a manner similar to Mendelson's book, Rosser proves [pages 61-62] :
Theorem IV.4.1 : $P \supset Q, Q \supset R \vdash \lnot (\lnot R \land P)$
Theorem IV.4.2 : $\vdash \lnot (\lnot P \land P)$
Theorem IV.4.3 : $\vdash \lnot \lnot P \supset P$
Then he proves [page 63] :
Theorem IV.4.7 : $\lnot P \supset \lnot Q \vdash Q \supset P$.
Finally, we have :
Theorem IV.4.8 : $P \supset Q \vdash (R \land P ) \supset (Q \land R)$
Proof
(i) $P \supset Q \vdash \lnot (Q \land R) \supset \lnot (R \land P)$ --- axiom 3
(ii) $\lnot (Q \land R) \supset \lnot (R \land P) \vdash (R \land P) \supset (Q \land R)$ --- from Th.IV.4.7 with $Q \land R$ for $P$ and $R \land P$ for $Q$
(iii) $P \supset Q \vdash (R \land P ) \supset (Q \land R)$ from (i) and (ii) by transitivity of $\vdash$.
To complete the proof of the formula in the OP's question, we need some more work :
- to prove the commutativity of $\land$ [see Theorem IV.4.13, page 64],
- to prove the Deduction Theorem [see Theorem IV.6.1, page 65].