Like Find $\sum\limits_{k=1}^{12}\tan \frac{k\pi}{13}\cdot \tan \frac{3k\pi}{13}$,
$$\tan16\theta=\frac{\binom{16}1t-\binom{16}3t^3+\cdots+\binom{16}{13}t^{13}-\binom{16}{15}t^{15}}{\cdots}\text{ where }t=\tan\theta$$
If $\displaystyle\tan16\theta=0,16\theta=r\pi$ where $r$ is any integer
$\displaystyle\implies\theta=\frac{r\pi}{16}$ where $0\le r\le15$
So, the roots of $\displaystyle\binom{16}1t-\binom{16}3t^3+\cdots+\binom{16}{13}t^{13}-\binom{16}{15}t^{15}=0$ are $\displaystyle\tan r\theta$ where $\displaystyle0\le r\le15,r\ne8$ as $\displaystyle\tan\frac{8\cdot\pi}{16}$ is not finitely defined
So, the roots of $\displaystyle\binom{16}1-\binom{16}3t^2+\cdots+\binom{16}{13}t^{12}-\binom{16}{15}t^{14}=0$
or of $\displaystyle\binom{16}{15}t^{14}-\binom{16}{13}t^{12}+\cdots+\binom{16}3t^2-\binom{16}1=0$
are $\displaystyle\tan r\theta$ where $\displaystyle1\le r\le15,r\ne8$
But as $\displaystyle\tan\frac{(16-n)\pi}{16}=\tan\left(\pi-\frac{n\pi}{16}\right)=-\tan\frac{n\pi}{16},\tan^2\frac{(16-n)\pi}{16}=\tan^2\frac{n\pi}{16};$
the roots of $\displaystyle\binom{16}{15}u^7-\binom{16}{13}u^6+\cdots+\binom{16}3u-\binom{16}1=0$ are $\displaystyle \tan^2\frac{(16-n)\pi}{16}=\tan^2\frac{n\pi}{16}$ where $1\le n\le 7$ or $9\le r\le15$
Now Vieta's formula is inviting