Find $\sum\limits_{k=1}^{12}\tan \frac{k\pi}{13}\cdot \tan \frac{3k\pi}{13}$.
I tried some elementary ways while all failed.
Find $\sum\limits_{k=1}^{12}\tan \frac{k\pi}{13}\cdot \tan \frac{3k\pi}{13}$.
I tried some elementary ways while all failed.
Let $z:=e^{i\pi/13}$. Then $\sin(k\pi/13)=(z^k-z^{-k})/2i$ and $\cos(k\pi/13)=(z^k+z^{-k})/2$.
We get $$\tan(\frac{k\pi}{13})\cdot\tan(\frac{3k\pi}{13})=-\frac{z^k-z^{-k}}{z^k+z^{-k}}\cdot\frac{z^{3k}-z^{-3k}}{z^{3k}+z^{-3k}}=-\frac{1-z^{2k}}{1+z^{2k}}\cdot\frac{1-z^{6k}}{1+z^{6k}}$$
Expand this in Taylor series (the coefficients are going to be sums of four or so geometric progressions) and sum these series for $k=1,...,12$. Notice that $1+z^k+z^{2k}+...+z^{12k}=0$, for $k$ not multiple of $13$ and equal to $0$ otherwise. This is because $z^{13}+1=0$.
Now the sum becomes the sum of four or so geometric series (geometric series we know how to add).
From Sum of tangent functions where arguments are in specific arithmetic series and Prove the trigonometric identity $(35)$,
$$\tan13x=\frac{\binom{13}1t-\binom{13}3t^3+\binom{13}5t^5-\binom{13}7t^7+\binom{13}9t^9-\binom{13}{11}t^{11}+t^{13}}{\cdots}$$
where $\displaystyle t=\tan x$
Now if $\displaystyle\tan13x=0,13x=n\pi$ where $n$ is any integer
$\displaystyle\implies x=\frac{n\pi}{13}$ where $0\le n\le13-1$
As $\displaystyle\tan0=0,\tan\frac{n\pi}{13},1\le n\le12$ are the roots of
$\displaystyle\binom{13}1-\binom{13}3t^2+\binom{13}5t^4-\binom{13}7t^6+\binom{13}9t^8-\binom{13}{11}t^{10}+t^{12}=0\ \ \ \ (1)$
As $\displaystyle\tan(r\pi-y)=-\tan y,$ for any integer $r$
the given relation $\displaystyle(i)\sum\limits_{k=1}^{12}\tan\frac{k\pi}{13}\cdot \tan\frac{3k\pi}{13}=2\sum\limits_{k=1}^6\tan\frac{k\pi}{13}\cdot \tan\frac{3k\pi}{13}$
$\displaystyle(ii)u_k=\tan^2\frac{k\pi}{13},1\le k\le6$
shall be the roots of
$\displaystyle\binom{13}1-\binom{13}3u+\binom{13}5u^2-\binom{13}7u^3+\binom{13}9u^4-\binom{13}{11}u^5+u^6=0\ \ \ \ (2)$
Now, $\displaystyle y_k=\tan\frac{k\pi}{13}\cdot \tan\frac{3k\pi}{13}=\frac{3u_k-u_k^2}{1-3u_k}$ (using $\tan3A$ formula )
$\displaystyle\implies u_k^2=3u_k-y_k(1-3u_k)=3u_k(1+y_k)-y_k$
So, we need to transform Equation $\#(2)$ in terms of $y$
Then apply Vieta's Formulas.
But my Question is why $\displaystyle\tan\frac{k\pi}{13}$ is paired with $\displaystyle\tan\frac{3k\pi}{13},$ but not with $\displaystyle\tan\frac{2k\pi}{13}$ or $\displaystyle\tan\frac{5k\pi}{13}$ etc.?