Possible Duplicate:
What is the value of 1^i?
According to Euler's formula : $e^{ix}=\cos x + i\cdot \sin x$ we may write :
$$e^{i\cdot \frac{\pi}{2}}=i \Rightarrow \left(e^{i\cdot \frac{\pi}{2}}\right)^{i}=i^{i}\Rightarrow e^{\frac{-\pi}{2}}=i^{i}$$
So,
$$e^{\pi}=\left(e^{\frac{\pi}{2}}\right)^2=\left(\frac{1}{e^{\frac{-\pi}{2}}}\right)^2=\left(\frac{1}{i^{i}}\right)^2=\left(i^{-i}\right)^2=(-1)^{-i}$$
Since $e^{\pi}$ is proven by Gelfond–Schneider theorem to be transcendental number it follows that $(-1)^{-i}$ is a transcendental number. So,my question is :
Are numbers : $(-1)^{i} , 1^{-i} , 1^{i} $ transcendental numbers ?