This is an alternate solution.
Let $\alpha$ and $\beta$ be any pair of irrational numbers such that
$$1 < \alpha < 2 < \beta\quad\text{ and }\quad
\frac{1}{\alpha} + \frac{1}{\beta} = 1.$$
The two sequences
$\displaystyle\;\left\lfloor\alpha k\right\rfloor\;$ and
$\displaystyle\;\left\lfloor\beta k\right\rfloor\;$, $k \in \mathbb{Z}_{+}$
are called Beatty sequence and it is known they form a partition of $\mathbb{Z}_{+}$.
Define two functions $\tilde{\alpha}, \tilde{\beta} : \mathbb{Z}_{+} \to \mathbb{Z}_{+}$ by
$$
\tilde{\alpha}(k) = \left\lfloor\alpha k\right\rfloor
\quad\text{ and }\quad
\tilde{\beta}(k) = \left\lfloor\beta k\right\rfloor
$$
We have
$$\mathbb{Z}_{+} = \tilde{\alpha}(\mathbb{Z}_{+}) \uplus \tilde{\beta}(\mathbb{Z}_{+})$$ where $\uplus$ stands for disjoint union.
Replace the rightmost $\mathbb{Z}_{+}$ recursively by this relation, we get
$$\begin{align}
\mathbb{Z}_{+}
&= \tilde{\alpha}(\mathbb{Z}_{+})
\uplus \tilde{\beta}(\mathbb{Z}_{+})\\
&= \tilde{\alpha}(\mathbb{Z}_{+})
\uplus \tilde{\beta}(\tilde{\alpha}(\mathbb{Z}_{+}))
\uplus \tilde{\beta}(\tilde{\beta}(\mathbb{Z}_{+})))\\
&= \tilde{\alpha}(\mathbb{Z}_{+})
\uplus \tilde{\beta}(\tilde{\alpha}(\mathbb{Z}_{+}))
\uplus \tilde{\beta}(\tilde{\beta}(\tilde{\alpha}(\mathbb{Z}_{+})))
\uplus \tilde{\beta}(\tilde{\beta}(\tilde{\beta}(\mathbb{Z}_{+}))))\\
&\;\vdots
\end{align}
$$
As a consequence, if one define a sequence of subsets $A_1, A_2, \ldots \subset \mathbb{Z}_{+}$ recursively by
$$A_1 = \tilde{\alpha}(\mathbb{Z}_{+})
\quad\text{ and }\quad
A_n = \tilde{\beta}(A_{n-1}), \quad\text{ for } n > 1,
$$
these subsets will be pairwise disjoint. It is clear all these $A_n$ are infinite sets.
Since $\beta > 2$, we have
$$\tilde{\beta}(k) = \left\lfloor \beta k \right\rfloor > \beta k - 1 \ge (\beta - 1) k\quad\text{ for all } k \in \mathbb{Z}_{+}$$
This implies
$$\tilde{\beta}^{\circ\,\ell}(k) = \underbrace{\tilde{\beta}(\tilde{\beta}( \cdots \tilde{\beta}(k)))}_{\ell \text{ times}} > (\beta-1)^\ell k \ge (\beta-1)^\ell \quad\text{ for all } k, \ell \in \mathbb{Z}_{+}$$
As a result,
$$\bigcap_{\ell=1}^\infty \tilde{\beta}^{\circ\,\ell}(\mathbb{Z}_{+}) = \emptyset
\quad\implies\quad
\mathbb{Z_{+}} = \biguplus_{k = 1}^\infty A_k$$
i.e. $\mathbb{Z}_{+}$ is an infinite disjoint union of infinite sets $A_k$. Since there are uncountable choices for $\alpha$, there are uncountable ways of such infinite disjoint unions.
For a concrete example, let $\alpha = \phi, \beta = \phi^2$ where $\phi$ is the golden mean, we get something like
$$\begin{array}{rll}
\mathbb{Z}_{+} =
& \{\; 1,3,4,6,8,9,11,12,14,16,17,19,\ldots\;\}\\
\uplus & \{\; 2,7,10,15,20,23,28,31,36,41,\ldots\;\}\\
\uplus & \{\; 5,18,26,39,52,60,73,81,94,\ldots\;\}\\
\uplus &\{\; 13,47,68,\ldots\;\}\\
\vdots\; &
\end{array}$$