Let $a,b \in R$ such that $a>2b>0$ and let $F:[0, \frac{\pi}{3}] \rightarrow R$ be defined by
$$F(x) = \int_0^{\pi x} \frac{d \theta}{ a \cos \theta - b \sin \theta}$$
How can one find a critical point of the function $F(x) - \frac{\sqrt{2 \pi}}{a-b}x$ on the interval $(0,\frac{\pi}{3} )$?