I got this question in homework:
Let $\{0,1\}^A$ the set of all functions from A (not necessarily a finite set) to $\{0,1\}$. Find a correspondence (function) between $\{0,1\}^A$ and $\mathcal P(A)$ (The power set of $A$). Prove that this correspondence is one-to-one and onto.
I don't know where to start, so I need a hint. What does it mean to find a correspondence? I'm not really supposed to define a function, right? I guess once I have the correspondence defined somehow, the proof will be easier.
Any ideas? Thanks!