Is there an efficient way to calculate the inverse of an $N \times N$ diagonal matrix plus a constant matrix? I am looking at $N$ of around $40,000$.
$$\left[\begin{array}{cccc} a & b & \cdots & b\\ b & a & & \vdots\\ \vdots & & \ddots & b\\ b & \cdots & b & a \end{array}\right]^{-1} = \,\,?$$
Putting this in to mathematica, for $N \in \{2, 3, 4\}$, the result is:
$$\left[ \begin{array}{cc} a & b \\ b & a \\ \end{array} \right]^{-1} = \left[ \begin{array}{cc} \frac{a}{a^2-b^2} & -\frac{b}{a^2-b^2} \\ -\frac{b}{a^2-b^2} & \frac{a}{a^2-b^2} \\ \end{array} \right]$$
$$\left[ \begin{array}{ccc} a & b & b \\ b & a & b \\ b & b & a \\ \end{array} \right]^{-1} = \left[ \begin{array}{ccc} \frac{a^2-b^2}{a^3-3 a b^2+2 b^3} & \frac{-a b+b^2}{a^3-3 a b^2+2 b^3} & \frac{-a b+b^2}{a^3-3 a b^2+2 b^3} \\ \frac{-a b+b^2}{a^3-3 a b^2+2 b^3} & \frac{a^2-b^2}{a^3-3 a b^2+2 b^3} & \frac{-a b+b^2}{a^3-3 a b^2+2 b^3} \\ \frac{-a b+b^2}{a^3-3 a b^2+2 b^3} & \frac{-a b+b^2}{a^3-3 a b^2+2 b^3} & \frac{a^2-b^2}{a^3-3 a b^2+2 b^3} \\ \end{array} \right]$$
$$\left[ \begin{array}{cccc} a & b & b & b \\ b & a & b & b \\ b & b & a & b \\ b & b & b & a \\ \end{array} \right]^{-1} = \left[ \begin{array}{cccc} \frac{a^3-3 a b^2+2 b^3}{a^4-6 a^2 b^2+8 a b^3-3 b^4} & \frac{-a^2 b+2 a b^2-b^3}{a^4-6 a^2 b^2+8 a b^3-3 b^4} & \frac{-a^2 b+2 a b^2-b^3}{a^4-6 a^2 b^2+8 a b^3-3 b^4} & \frac{-a^2 b+2 a b^2-b^3}{a^4-6 a^2 b^2+8 a b^3-3 b^4} \\ \frac{-a^2 b+2 a b^2-b^3}{a^4-6 a^2 b^2+8 a b^3-3 b^4} & \frac{a^3-3 a b^2+2 b^3}{a^4-6 a^2 b^2+8 a b^3-3 b^4} & \frac{-a^2 b+2 a b^2-b^3}{a^4-6 a^2 b^2+8 a b^3-3 b^4} & \frac{-a^2 b+2 a b^2-b^3}{a^4-6 a^2 b^2+8 a b^3-3 b^4} \\ \frac{-a^2 b+2 a b^2-b^3}{a^4-6 a^2 b^2+8 a b^3-3 b^4} & \frac{-a^2 b+2 a b^2-b^3}{a^4-6 a^2 b^2+8 a b^3-3 b^4} & \frac{a^3-3 a b^2+2 b^3}{a^4-6 a^2 b^2+8 a b^3-3 b^4} & \frac{-a^2 b+2 a b^2-b^3}{a^4-6 a^2 b^2+8 a b^3-3 b^4} \\ \frac{-a^2 b+2 a b^2-b^3}{a^4-6 a^2 b^2+8 a b^3-3 b^4} & \frac{-a^2 b+2 a b^2-b^3}{a^4-6 a^2 b^2+8 a b^3-3 b^4} & \frac{-a^2 b+2 a b^2-b^3}{a^4-6 a^2 b^2+8 a b^3-3 b^4} & \frac{a^3-3 a b^2+2 b^3}{a^4-6 a^2 b^2+8 a b^3-3 b^4} \\ \end{array} \right]$$
It appears that there should be a formula but I am not sure how to derive it. In the end, I am looking for a numerical result.