$$A=\begin{pmatrix}1 & -a_1 & -a_1 &\cdots & -a_1\\ -a_2 & 1 &-a_2 & \cdots &-a_2\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ -a_{N-1} & -a_{N-1} & \cdots& 1 & -a_{N-1}\\ -a_N & -a_N & \cdots & -a_N & 1 \end{pmatrix}.$$
Where $a_i\geq0\;\forall\; i\in\{1, \cdots, N\}$ and $$\sum\limits_{i=1}^{N}\dfrac{a_i}{a_i+1}<1.\quad (1)$$
EDIT 1: The condition $(1)$ must guarantee that the inverse exists.
EDIT 2 In fact, there is no formula given for $A^{-1}$. The problem is to find $P_i$ in the following equation: $$P_i-a_i\sum\limits_{j\neq i}^{N}P_j=\alpha a_i\;\forall\;i\in\{1, \cdots, N\}.$$ This is equivalent to $AP=b$ and hence $P=A^{-1}b$. They said that $P_i$ is given by: $$P_i=\dfrac{\alpha}{1-\sum\limits_{j=1}^{N}\dfrac{a_j}{1+a_j}}\dfrac{a_i}{1+a_i}.$$ Where $b=[\alpha a_1, \alpha a_2, \cdots, \alpha a_N]^{\mathrm{T}}$ and $P=[P_1, P_2, \cdots, P_N]^{\mathrm{T}}.$
This matrix is given in a paper: the authors said that its inverse is given by $A^{-1}$ when $(1)$ is satisfied. I do not know how to proceed to invert it.
How did they get $P$ without getting $A^{-1}$ ?
Thank you very much.