I have found in wolfram alpha that $\displaystyle 4\cos\left(\frac{\pi}{26}\right)+\tan\left(\frac{2\pi}{13}\right)=\sqrt{13+2\sqrt{13}}$.
How to prove this identity ? Thank you.
I have found in wolfram alpha that $\displaystyle 4\cos\left(\frac{\pi}{26}\right)+\tan\left(\frac{2\pi}{13}\right)=\sqrt{13+2\sqrt{13}}$.
How to prove this identity ? Thank you.
This is old problem can see: How prove this $\tan{\frac{2\pi}{13}}+4\sin{\frac{6\pi}{13}}=\sqrt{13+2\sqrt{13}}$
show that: The follow nice trigonometry
$$\tan{\dfrac{2\pi}{13}}+4\sin{\dfrac{6\pi}{13}}=\sqrt{13+2\sqrt{13}}$$
Well you can look here
http://mathworld.wolfram.com/TrigonometryAnglesPi13.html
there something is explained...