4

In this page http://mathworld.wolfram.com/TrigonometryAnglesPi13.html

I found equation (11) and (12).

$$\cos^2\frac{\pi}{13}+\cos^2\frac{3\pi}{13}+\cos^2\frac{4\pi}{13}=\frac{11+\sqrt{13}}{8}$$

$$\sin\frac{\pi}{13}+\sin\frac{3\pi}{13}+\sin\frac{4\pi}{13}=\sqrt{\frac{13+3\sqrt{13}}{8}}$$

How to prove it ?

Thanks in advances

Bless
  • 2,848
  • Related: http://math.stackexchange.com/questions/55120/showing-tan-frac2-pi13-tan-frac5-pi13-tan-frac6-pi13-sqrt6518-s http://math.stackexchange.com/questions/578286/how-prove-this-tan-frac2-pi134-sin-frac6-pi13-sqrt132-sqrt13 http://math.stackexchange.com/questions/834962/how-to-find-the-value-of-4-cos-frac-pi26-tan-frac2-pi13 http://math.stackexchange.com/questions/11246/how-to-prove-that-tan3-pi-11-4-sin2-pi-11-sqrt11 – lab bhattacharjee Aug 02 '15 at 17:33

2 Answers2

3

For the first one, let $\zeta=e^{2\pi i/13}$. This is a thirteenth root of $1$, so $1+\zeta+\zeta^2+...+\zeta^{12}=0$. \begin{align} A &=\cos^2(\pi/13)+\cos^2(3\pi/13)+\cos^2(4\pi/13)\\ B &=2A-3=\cos(2\pi/13)+\cos(6\pi/13)+\cos(8\pi/13)\\ 2B &=\zeta+\zeta^{-1}+\zeta^3+\zeta^{-3}+\zeta^4+\zeta^{-4}\\ C &=-1-2B=\zeta^2+\zeta^{-2}+\zeta^5+\zeta^{-5}+\zeta^6+\zeta^{-6}\\ 2BC &=3(\zeta+\zeta^2+...+\zeta^{12})=-3\\ & 2B(2B+1) *=3 \end{align}

Leucippus
  • 26,329
Empy2
  • 50,853
3

Since $\pm 1,\pm 3,\pm 4$ are the only quadratic residues in $\mathbb{F}_{13}^*$, both sums can be related with a quadratic Gauss sum $\pmod{13}$. You just need to apply the cosine duplication formula to the first one and to consider the square of the second one.

Jack D'Aurizio
  • 353,855