The D'Alembert solution of the wave equation $$u_{tt}-c^2u_{xx}=0, x \in \mathbb{R}, t>0$$ $$u(x,0)=\phi(x), x \in \mathbb{R}$$ $$u_t(x,0)=\psi(x), x \in \mathbb{R}$$
is the following:
$$u(x,t)=\frac{1}{2}\begin{bmatrix} \phi(x-ct)+\phi(x+ct) \end{bmatrix}+\frac{1}{2c} \int_{x-ct}^{x+ct} \psi(\tau)d \tau$$
I am looking at the proof of this solution, which is the following:
The general solution of the wave equation is given from: $\displaystyle{u(x,t)=f(x+ct)+g(x-ct)} \ \ \ \ \ (1)$
$\displaystyle{u(x,0)=f(x)+g(x)=\phi(x)} \ \ \ \ \ \ (2)$
$(1): \displaystyle{u_t(x,t)=c(f'(x+ct)-g'(x-ct))} \ \ \ \ \ (3)$
$\displaystyle{u_t(x,0)=c(f'(x)-g'(x))=\psi(x)} \ \ \ \ \ \ (4)$
$(2): \displaystyle{f'(x)+g'(x)=\phi'(x)} \ \ \ \ \ (5)$
From the relations $(4)$ and $(5)$ we get:
$$f'(x)=\frac{1}{2}\begin{bmatrix} \phi'(x)+\frac{\psi(x)}{c} \end{bmatrix}$$ $$g'(x)=\frac{1}{2}\begin{bmatrix} \phi'(x)-\frac{\psi(x)}{c} \end{bmatrix}$$
Integrating these equations we get:
$$f(s)=\frac{1}{2}\begin{bmatrix} \phi(s)+\frac{1}{c} \int_0^s \psi(\tau)d \tau \end{bmatrix}+a$$ $$g(s)=\frac{1}{2}\begin{bmatrix} \phi(s)-\frac{1}{c} \int_0^s \psi(\tau)d \tau \end{bmatrix}+b$$
Why are the limits of the integral $0$ and $s$, and not $-\infty$ and $+\infty$??