Here's a proof that just uses row reduction. Let $R_i$ denote the $i^\text{th}$ row of your matrix. Replacing the first row by $R_1 \leftarrow xR_2 + x^2 R_3 + \cdots + x^{n-1} R_n$ results in the matrix
$$
\begin{pmatrix}
0 & 0 & 0 & \cdots & 0 & 1 + 2 x + 3 x^2 + \cdots + (n-1)x^{n-2} + x^n \\
-1 & x & 0 & \cdots & 0 & 2 \\
0 & -1 & x & \cdots & 0 & 3 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -1 & x
\end{pmatrix} \, .
$$
Using Laplace expansion along the first row, we have
$$
\det(D_n) = (-1)^{n+1} (1 + 2 x + 3 x^2 + \cdots + (n-1)x^{n-2} + x^n) \det(M) \, ,
$$
where $M$ is the $(n-1) \times (n-1)$ matrix
$$
\begin{pmatrix}
-1 & x & 0 & \cdots & 0 \\
0 & -1 & x & \cdots & 0 \\
\vdots & \vdots & \ddots & & \vdots \\
0 & 0 & 0 & \cdots & -1
\end{pmatrix} \, .
$$
Since $M$ is upper triangular, its determinant is the product of its diagonal entries, so $\det(M) = (-1)^{n-1}$.
Then
\begin{align*}
\det(D_n) &= (-1)^{n+1} (1 + 2 x + 3 x^2 + \cdots + (n-1)x^{n-2} + x^n) (-1)^{n-1} \\
&= (-1)^{2n} (1 + 2 x + 3 x^2 + \cdots + (n-1)x^{n-2} + x^n) \\
&= 1 + 2 x + 3 x^2 + \cdots + (n-1)x^{n-2} + x^n \, .
\end{align*}