Setting $7\theta=\pi,S=\sin2\theta+\sin4\theta+\sin8\theta=(\sin2\theta+\sin8\theta)+\sin4\theta$
Using Prosthaphaeresis Formula & Double angle formula,
$S=2\sin5\theta\cos3\theta+2\sin2\theta\cos2\theta$
As $5\theta=\pi-2\theta,\sin5\theta=\sin2\theta$
and $3\theta=\pi-4\theta,\cos3\theta=-\cos4\theta$
$S=-2\sin2\theta\cos4\theta+2\sin2\theta\cos2\theta=2\sin2\theta(\cos2\theta-\cos4\theta)$
Again using Prosthaphaeresis Formula, $S=2\sin2\theta(2\sin3\theta\sin\theta)$ which is clearly $>0$
But, $\sin2\theta=\sin(\pi-2\theta)=\sin5\theta;\sin\theta=\sin6\theta;\sin3\theta=\sin4\theta$
$\implies \dfrac S4=+\sqrt{\prod_{r=1}^6\sin r\theta}\ \ \ \ (1)$
We can derive (See below) $\sin7x=7\sin x+\cdots-64\sin^7x$
If $\sin7x=0,7x=n\pi$ where $n$ is any integer, $x=\dfrac{n\pi}7,0\le n\le6$
So, $\sin\dfrac{n\pi}7,0\le n\le6$ are the roots of $7\sin x+\cdots-64\sin^7x=0$
So, $\sin\dfrac{n\pi}7,1\le n\le6$ are the roots of $7+\cdots-64\sin^6x=0\iff64\sin^6x+\cdots-7=0$
Using Vieta's formula, $\prod_{r=1}^6\sin r\theta=\dfrac7{64}$
Apply this in $(1)$
Derivation $\#1:$
Using de Moivre's Theorem, $\cos7y+i\sin7y=(\cos y+i\sin y)^7$
$=\cdots +i\left(\sin^7y -\binom72\sin^5y\cos^2y+\binom74\sin^3y\cos^4y-\binom76\sin y\cos^6y\right)$
Writing $\cos^2y=1-\sin^2y$
$\cos7y+i\sin7y=\cdots +i\left(7\sin y-64\sin^7y\right)$
Derivation $\#2:$
Using Prosthaphaeresis Formula, $\sin7x+\sin x=2\sin4x\cos3x=2(2\sin2x\cos2x)(4\cos^3x-3\cos x)=4(2\sin x\cos x)(1-2\sin^2x)(4\cos^3x-3\cos x)$
$=8(\sin x-2\sin^3x)\cos^2x(4\cos^2x-1)$
$=8(\sin x-2\sin^3x)(1-\sin^2x)\{4(1-\sin^2x)-1\}$
$=8\sin x+\cdots-64\sin^7x$
$\implies\sin7x=7\sin x+\cdots-64\sin^7x$