Let put $7\theta$=$2n\pi$ where $n$ stands for any integer.
Now $$7\theta=2n\pi$$$$4\theta=2n\pi-3\theta$$$$\Rightarrow \sin(4\theta)=\sin(2n\pi-3\theta)$$ $$\rightarrow \sin(4\theta)=-\sin(3\theta)\tag1$$
Now from equation $1$ we can get
$$2\sin(2\theta)\cos(2\theta)=4\sin^3\theta-3\sin\theta$$
$$4\sin\theta \cos\theta (1-2\sin^2\theta)=\sin\theta(4\sin^2\theta-3)$$
$$4\cos\theta(1-2\sin^2\theta)=4\sin^2\theta-3$$
Squaring both sides and then adding the result, you will get
$$64\sin^6\theta-112\sin^4\theta+56\sin^2\theta-7=0$$
This is a cubic with $\sin^2\theta$ with the roots:$\sin^2(2\pi /7)$, $\sin^2(4\pi /7)$, $\sin^2(8\pi /7)$
Sum of the roots is $$\sin^2(2\pi /7)+\sin^2(4\pi /7)+\sin^2(8\pi /7)=\frac{7}{4}\tag2$$
But you can prove through trigonometric identities (as sum of all the angles is $2\pi$) that
$$\sin(2\pi /7) \sin(4\pi /7)+\sin(4\pi /7) \sin(8\pi /7)+\sin(2\pi /7)\sin(8\pi /7)=0$$
Hence the sum of the roots from $(2)$
$$(\sin(2\pi /7)+\sin(4\pi /7)+\sin(8\pi /7))^2=\frac{7}{4}$$
And the result follows.