$$y=A_1e^{-\frac{(x-d)^2}{2{\sigma _1}^2}}+A_2e^{-\frac{(x+d)^2}{2{\sigma _2}^2}}$$
To find the maxima I should solve $\frac{dy}{dx}=0$.
$$\frac{dy}{dx}=-\frac{A_1}{{\sigma _1}^2}e^{-\frac{(x-d)^2}{2{\sigma _1}^2}}(x-d)-\frac{A_2}{{\sigma _2}^2}e^{-\frac{(x+d)^2}{2{\sigma _2}^2}}(x+d)=0$$
But I have no idea how to solve this equation. Suggestions are welcome.