$\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}
\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\sum_{k = 0}^{n}\pars{-1}^{k}{n \choose k}^{2}
=\pars{-1}^{n/2}{n \choose n/2}}$
$$
\mbox{Hereafter we'll use widely the identity}\quad
{s \choose \ell} = \oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{s} \over z^{\ell + 1}}
\,{\dd z \over 2\pi\ic}\tag{1}
$$
\begin{align}&\color{#c00000}{\sum_{k = 0}^{n}\pars{-1}^{k}{n \choose k}^{2}}
=\sum_{k = 0}^{n}\pars{-1}^{k}{n \choose k}\
\overbrace{\oint_{\verts{z}\ =\ 1}
{\pars{1 + z}^{n} \over z^{k + 1}}\,{\dd z \over 2\pi\ic}}
^{\ds{\mbox{See identity}\ \pars{1}}}
\\[3mm]&=\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n} \over z}
\sum_{k = 0}^{n}{n \choose k}\pars{-\,{1 \over z}}^{k}\,{\dd z \over 2\pi\ic}
=\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n} \over z}
\bracks{1 + \pars{-\,{1 \over z}}}^{n}{\dd z \over 2\pi\ic}
\\[3mm]&=\pars{-1}^{n}\oint_{\verts{z}\ =\ 1}{\pars{1 - z^{2}}^{n} \over z^{n + 1}}
{\dd z \over 2\pi\ic}
=\pars{-1}^{n}\oint_{\verts{z}\ =\ 1}{1 \over z^{n + 1}}\
\overbrace{\sum_{k = 0}^{n}{n \choose k}\pars{-1}^{k}z^{2k}}
^{\ds{=\ \pars{1 - z^{2}}^{n}}}\
{\dd z \over 2\pi\ic}
\\[3mm]&=\pars{-1}^{n}\sum_{k = 0}^{n}{n \choose k}\pars{-1}^{k}
\oint_{\verts{z}\ =\ 1}{1 \over z^{\color{#00f}{\Large n\ -\ 2k}\ +\ 1}}
\,{\dd z \over 2\pi\ic}
\qquad\qquad\qquad\qquad\qquad\qquad\qquad\pars{2}
\end{align}
$$
\mbox{However,}\quad
\oint_{\verts{z}\ =\ 1}{1 \over z^{\color{#00f}{\Large n\ -\ 2k}\ +\ 1}}
\,{\dd z \over 2\pi\ic}
=\left\lbrace\begin{array}{lcl}
1 & \mbox{if} & n\ \mbox{is even and}\ n = 2k
\\
0 && \mbox{otherwise}
\end{array}\right.\qquad\qquad\,\quad\pars{3}
$$
With $\pars{2}$ and $\pars{3}$, we'll find:
$$\color{#00f}{\large%
\sum_{k = 0}^{n}\pars{-1}^{k}{n \choose k}^{2}}
=\color{#00f}{\large\left\lbrace\begin{array}{lcl}
\pars{-1}^{n/2}{n \choose n/2} & \mbox{if} & n\ \mbox{is even}
\\
0 && \mbox{otherwise}
\end{array}\right.}
$$