-2

I am a high school student and I am searching for a not very complicated way to calculate $${100\choose 0}^2-{100\choose 1}^2+{100\choose 2}^2-{100\choose 3}^2+...+{100\choose 100}^2.$$

Mars Plastic
  • 4,239
tantan
  • 3

1 Answers1

1

Let $$S_n=\sum_{k=0}^{n} (-1)^k {n \choose k}^2$$ $$(1+x)^n=\sum_{k=0}^{n} {n \choose k} x^{k}~~~~~)1)$$ $$(1-1/x)^n=\sum_{k=0}^{n} (-1)^k {n \choose k} x^{-k}~~~~~)1)$$ Multiplying (1) and (2), we get $$(-1)^n (1-x^2)^n= \sum_{k=0}^{n} (-1)^k {n \choose k}^2 x^0+...+...$$ So $$S_n=[x^0] (-1)^n (1-x^2)^n=(-1)^{n/2}{n \choose n/2},~ if~ n ~ is ~ even$$ So the sum of the required series is $${100 \choose 50}$$

Z Ahmed
  • 43,235