So, how do I prove that this trigonometric sum equals to zero?
$$\sum_{k = 0}^{n - 1} \cos \left(\frac{2\pi k}{n}\right) = 0$$
So, how do I prove that this trigonometric sum equals to zero?
$$\sum_{k = 0}^{n - 1} \cos \left(\frac{2\pi k}{n}\right) = 0$$
Hint: Answer the following questions: What are the roots of $x^n-1=0$? What are the real parts? How can you find the sum of roots of a given polynomial equation by looking at the coefficients?
Hint: Write $$\sum_{k = 0}^{n - 1} \cos \left(\frac{2\pi k}{n}\right) = \sum_{k = 0}^{n - 1} \operatorname{Re}\!\left(e^{i\frac{2\pi k}{n}}\right) = \operatorname{Re}\!\left(\sum_{k = 0}^{n - 1}e^{i\frac{2\pi k}{n}}\right)$$ and recall that for any $x\in\mathbb{C}\setminus\{1\}$ $$ \sum_{k = 0}^{n - 1} x^k = \frac{x^n-1}{x-1}. $$