For all n\geq1 :
$$\left(\begin{matrix}2n\\ 0 \end{matrix}\right) +\left(\begin{matrix}2n\\ 2 \end{matrix}\right) +\left(\begin{matrix}2n\\ 4 \end{matrix}\right) + \ldots +\left(\begin{matrix}2n\\ 2k \end{matrix}\right) + \ldots +\left(\begin{matrix}2n\\ 2n \end{matrix}\right) $$
is equal to
$$\left(\begin{matrix}2n\\ 1 \end{matrix}\right) +\left(\begin{matrix}2n\\ 3 \end{matrix}\right) +\left(\begin{matrix}2n\\ 5 \end{matrix}\right) + \ldots +\left(\begin{matrix}2n\\ 2k+1 \end{matrix}\right) + \ldots +\left(\begin{matrix}2n\\ 2n-1 \end{matrix}\right) .$$
MY SOLUTION
Binomial Formula : (a+b)^{2n} = \sum_{k=0}^{2n} \left(\begin{matrix}2n\\ k \end{matrix}\right) a^{k} b^{n-k}
let a=1 , let b=-1 , let n=2
(1+(-1))^{2(n)} = \left(\begin{matrix}2n\\ 0 \end{matrix}\right) -\left(\begin{matrix}2n\\ 1 \end{matrix}\right) +...\mbox{-}\left(\begin{matrix}2n\\ 2n-1 \end{matrix}\right) + \left(\begin{matrix}2n\\ 2n \end{matrix}\right)
(1+(-1))^{2(4)} = \left(\begin{matrix}2(2)\\ 0 \end{matrix}\right)-\left(\begin{matrix}2(2)\\ 1 \end{matrix}\right)+\left(\begin{matrix}2(2)\\ 02 \end{matrix}\right)-\left(\begin{matrix}2(2)\\ 2(2)-1 \end{matrix}\right)+ \left(\begin{matrix}2(2)\\ 2(2) \end{matrix}\right)
0=1-4+6-4+1
0=0
Thus for all n\geq1 :
\left(\begin{matrix}2n\\ 0 \end{matrix}\right) +\left(\begin{matrix}2n\\ 2 \end{matrix}\right) +\left(\begin{matrix}2n\\ 4 \end{matrix}\right) + \ldots +\left(\begin{matrix}2n\\ 2k \end{matrix}\right) + \ldots +\left(\begin{matrix}2n\\ 2n \end{matrix}\right)
is equal to
\left(\begin{matrix}2n\\ 1 \end{matrix}\right) +\left(\begin{matrix}2n\\ 3 \end{matrix}\right) +\left(\begin{matrix}2n\\ 5 \end{matrix}\right) + \ldots +\left(\begin{matrix}2n\\ 2k+1 \end{matrix}\right) + \ldots +\left(\begin{matrix}2n\\ 2n-1 \end{matrix}\right) . Can anyone please give feedback and tell me if my solution is correct.