Please give me feedback on my answer to this question. Question: For all $ n\geq1:\binom{2n}{0}+\binom{2n}{2}+\binom{2n}{4}+\cdots+\binom{2n}{2k}+\cdots+\binom{2n}{2n} $ is equal to $ \binom{2n}{1}+\binom{2n}{3}+\binom{2n}{5}+\cdots+\binom{2n}{2k+1}+\cdots+\binom{2n}{2n-1} $. Answer: False, since;
Let $a=1, b=-1$ and $n=1$ ,$k=0$ , using Binomial expression.
$$(a+b)^n= \sum \binom{n}{k} a^{k}b^{n-k}$$
Then $(1+-1)^{2(1)}=\binom{2}{0}1^{0}(-1)^{2-0}+\binom{2}{1}1^{1}(-1)^{2-1}+\binom{2}{2}1^{2}(-1)^{2-2}=\binom{2}{0}-\binom{2}{1}+\binom{2}{2}$
Thus :For all $n\geq1: \binom{2n}{0}+\binom{2n}{2}+\binom{2n}{4}+\cdots+\binom{2n}{2k}+\cdots+\binom{2n}{2n} \ne \binom{2n}{1}+\binom{2n}{3}+\binom{2n}{5}+\cdots+\binom{2n}{2k+1}+\cdots+\binom{2n}{2n-1}$ .