Hint $\ \ c_{i+j}=\overbrace{\underbrace{a_{i+j}}_{\large \color{#c00}{=\,0}}b_0+\underbrace{a_{i+j-1}}_{\large \color{#c00}{=\,0}}b_1+\cdots +\underbrace{a_{i+1}}_{\large \color{#c00}{=\,0}}b_{j-1}}^{\large \color{#c00}{=\,0}} +\overbrace{\underbrace{{\color{#c00}{a_i}}_{\phantom f}\!\!\!}_{\color{#c00}{\ne\, 0}}\underbrace{\color{#0a0}{b_j}}_{\color{#0a0}{\ne\, 0}}}^{\large \color{#c00}\ne\, \color{#0a0}0}+\overbrace{a_{i-1}\underbrace{b_{j+1}}_{\large \color{#0a0}{=\,0}}+\cdots+a_0 \underbrace{b_{i+j}}_{\large \color{#0a0}{=\,0}}}^{\large\color{#0a0}{=\,0}}$
where we used $\ \color{#c00}{k> i\Rightarrow a_k = 0}\ $ and, similarly, $\ \color{#0a0}{k> j\Rightarrow b_k = 0},\ $ & $\ \color{#c00}{a_i}\color{#0a0}{b_j}\neq 0\,$ by $R$ domain.
Simpler $ $ omit leading zeros, so the lead coef of the product is the product of the nonzero lead coefs so is nonzero, by the coef ring is a domain, i.e. $\,\ell (f),\ell(g)\ne 0\,\Rightarrow\, \ell(fg) = \ell(f)\ell(g)\ne 0.$
Remark $ $ That particular proof is usually employed in proof of one version of Gauss's Lemma, that a prime $\,p\in R\,$ persists as prime in $\,R[x]$.
It is instructive to give a direct proof of $\,p\nmid A,B\,\Rightarrow\,p\nmid AB.\,$ By $\,p\nmid A,B,\,$ when reduced mod $p$ both have lead coefs $\,\color{#0a0}{a,b\not\equiv 0}\,$ so $AB$ has lead coef $\,\color{#c00}{ab\not\equiv 0}\,$ (by $p$ prime), hence $AB\not\equiv 0,\,$ i.e.
$\qquad\qquad{\rm mod}\ p\!: \ \ \ \begin{eqnarray}
&&\ 0\ \not\equiv\ A\ \equiv\, \color{#0a0}a\, x^j\! + \:\cdots,\quad\ \ \ \color{#0a0}{a\not\equiv 0}\\
&&\ 0\ \not\equiv\ B\ \equiv\, \color{#0a0}b\, x^k\! + \:\cdots,\quad\ \ \ \color{#0a0}{b\not\equiv 0}\\ \Rightarrow\,\ &&0 \not\equiv AB \equiv \color{#c00}{ab}\ x^{j+k}\! + \:\cdots,\, \color{#c00}{ab\not\equiv 0}\end{eqnarray}$
i.e. primes $\:p\in R\:$ remain prime in $\:R[x]\:$ because the prime divisor property $\,\color{#0a0}{p\nmid a,b}\,\Rightarrow\ \color{#c00}{p\nmid ab}\,$ persists when multiplying leading coefficients. This is one form of Gauss's Lemma.
This is an elementwise view of the common structural proof that factors out $p$ to reduce to the trivial domain case (i.e. it is simply the common proof of $\,D\,$ domain $\Rightarrow\,D[x]\,$ domain, in the special case that $\,D \cong R/p \cong R\bmod p,\,$ for $p$ prime).