If $\lim\limits_{x→∞} f(x)$ and $\lim\limits_{x→∞} f''(x)$ both exist, then $\lim\limits_{x→∞} f''(x) = 0.$
You may use the fact that $\lim\limits_{x→∞} f(x)$and $\lim\limits_{x→∞} f'(x)$ both exist, then $\lim\limits_{x→∞} f'(x) = 0.$ Proof
I feel like this should be a simple application, but I'm not seeing a direct link.