Prove that if $\lim\limits_{x\to\infty}f(x)$ and $\lim\limits_{x\to\infty}f''(x)$ exist, then $\lim\limits_{x\to\infty}f'(x)=0$.
I can prove that $\lim\limits_{x\to\infty}f''(x)=0$. Otherwise $f'(x)$ goes to infinity and $f(x)$ goes to infinity, contradicting the fact that $\lim\limits_{x\to\infty}f(x)$ exists. I can also prove that if $\lim\limits_{x\to\infty}f'(x)$ exists, it must be 0. So it remains to prove that $\lim\limits_{x\to\infty}f'(x)$ exists. I'm stuck at this point.