So guys, how can I evaluate and prove that $$\lim_{n \to\infty} \frac{(2n-1)!!}{(2n)!!}=0.$$ Any ideas are welcomed.
$n!!$ is the double factorial, as explained in this wolfram post.
So guys, how can I evaluate and prove that $$\lim_{n \to\infty} \frac{(2n-1)!!}{(2n)!!}=0.$$ Any ideas are welcomed.
$n!!$ is the double factorial, as explained in this wolfram post.
You can notice that $$\frac{(2n-1)!!}{(2n)!!} = \prod_{k=1}^n \frac{2k-1}{2k} = \prod_{k=1}^n \left(1-\frac{1}{2k}\right).$$
So you want in fact calculate the infinite product $$\lim_{n\to\infty} \prod_{k=1}^n \left(1-\frac{1}{2k}\right) = \prod_{k=1}^\infty \left(1-\frac{1}{2k}\right)$$
Now you can use this fact: How to prove $\prod_{i=1}^{\infty} (1-a_n) = 0$ iff $\sum_{i=1}^{\infty} a_n = \infty$?
In fact, for this you do not need the equivalence, only one implication is sufficient: $$\prod_{k=1}^n (1-a_k) \le \frac1{\prod_{k=1}^n (1+a_k)} \le \frac1{1+\sum_{k=1}^n a_k}.$$ (We assume that $0<a_k<1$.)
After some research and thinking I have realised the following :
We can observe that : $$(2K-1)*(2K+1) < (2K)^2$$
Now, if we give values to K ( from 1 to n ) and the multiply all of them together we get : $$ 1 * 3^2 * 5^2 * ... * (2n-1)^2 * (2n+1) < 2^2 * 4^2 * ... * (2n)^2 $$
Now by dividing with $2n+1$ and the right side plus taking the square root of the entire identiy we get :
$$ {\frac {(2n-1)!!}{(2n)!!}} < {\frac {1}{\sqrt{2n+1}}}$$
Since the second term has the limit 0 as n goes to infinity and the left side is positive we get that :
$$\lim_{n\to \infty} {\frac{(2n-1)!!}{(2n)!!}} = 0$$
Since you are asking for an idea, then you can use property of double factorial. Click the given link, take a look equation $(9)$ and $(11)$. You will obtain $$ \frac{(2n-1)!!}{(2n)!!}=\frac{(2n)!}{(2^n\ n!)^2}=\frac{(2n)!}{4^n(n!)^2}, $$ then use Stirling's approximation $$ n!\sim\sqrt{2\pi n}\left(\frac ne\right)^n $$ as $n\to\infty$.
May this help a bit?
For positive integers, those relations hold:
$$(2n)!! = 2^n n!$$
$$(2n-1)!! = \frac{(2n)!}{2^n n!}$$
But I guess that your case need the general $n$ not only integers..
EDIT DUE TO THE COMMENTS BELOW
Using the relationships above and the Stirling approximations below, we find:
$$\frac{(2n-1)!!}{(2n)!!} = \frac{(2n)!}{(2^n n!)(2^n n!)} = \frac{(2n)!}{2^{2n} (n!)^2}$$
Applying the Stirling approximations:
$$\frac{(2n)!}{2^{2n} (n!)^2} = \frac{\sqrt{2\pi 2n} \left(\frac{2n}{e}\right)^{2n}}{2^{2n}(2\pi n)\left(\frac{n}{e}\right)^{2n}} = \frac{1}{\sqrt{\pi n}}$$
Chic goes to zero as $n$ goes to $+\infty$
$$(2n)! \approx 2\sqrt{\pi n}\left(\frac{2n}{e}\right)^{2n}$$
and
$$(n!)(n!) \approx 2^{2n}(2\pi n)\left(\frac{n}{e}\right)^{2n}$$
You will get at the end:
$$\frac{1}{\sqrt{\pi n}}$$
which tends to zero as $n$ goes to infinity!
– Enrico M. Dec 01 '15 at 14:02Using \begin{align} (2n-1)!! &= \frac{2^{n} \Gamma(n+1/2)}{\sqrt{\pi}} \\ (2n)!! &= 2^{n} n! \end{align} then \begin{align} \frac{(2n-1)!!}{(2n)!!} = \frac{\Gamma(n+1/2)}{\sqrt{\pi} \Gamma(n+1)}. \end{align} Now using the duplication formula, $\Gamma(2x) = (2\pi)^{-1/2} 2^{2x-1/2} \Gamma(x) \Gamma(x+1/2)$, this fraction becomes \begin{align} \frac{(2n-1)!!}{(2n)!!} = \frac{1}{4^{n}} \binom{2n}{n}. \end{align} Since $4^{n}$ grows faster than the binomial component it is then seen that \begin{align} \lim_{n \rightarrow \infty} \left[ \frac{(2n-1)!!}{(2n)!!} \right] = \lim_{n \rightarrow \infty} \left[ \frac{1}{4^{n}} \binom{2n}{n} \right] \rightarrow 0. \end{align}
Consider $(2n)!$
$(2n)!$=$2n(2n-1)(2n-2).........2(1)$
=$[(2n-1)(2n-3).....1][(2n)(2n-2)(2n-4).....2]$
=$(2n-1)!!$$2^n$$n!$
which gives $(2n-1)!!=(2n)!$$/$$2^n$$n!$
$(2n)!!$$=$$(2n)(2n-2)........2$
=$[2n][2n-2][2n-4]....2$
=$2^n$$n!$
so $(2n-1)!!$$/$$(2n)!!$$=$$(2n)!!$/$4^n$$[$(n)!$]^2$
$(2n-1)!!$$/$$(2n)!!$$=$$2n\choose n$$4^n$
using Stirling's Approximation
$2n\choose n$$=$$(2n/e)^{2n}\sqrt{2\pi*2n}$/$(n/e)^n\sqrt{2\pi*n}$
$=$$4^n$$[(n/e)^{2n}2\sqrt{\pi*n}]$/$[(n/e)^{2n}{2\pi*n}]$
$=$$4^n$/$\sqrt{\pi*n}$
which gives
$(2n-1)!!$$/$$(2n)!!$$ = $1/$\sqrt{\pi*n}$
finaly the limit $n$$\longrightarrow$$\infty$
$=$$0$
$\lim\limits_{n\to \infty}\dfrac{(2n-1)!!}{(2n)!!}=0\quad$ and $\quad\lim\limits_{n\to \infty}\dfrac{(2n+1)!!}{(2n)!!}=\infty.~$ Where it really gets interesting, however,
is when we attempt to evaluate their product. Their polar-opposite tendencies will cancel each
other out, yielding $~\lim\limits_{n\to \infty}\dfrac{(2n-1)!!}{(2n)!!}\cdot\dfrac{(2n+1)!!}{(2n)!!}=\dfrac2\pi~,~$ which is the famous Wallis product.
See also Basel problem for more information.
$$n! \approx \sqrt{2\pi n}\left(\frac{n}{e}\right)^n$$
– Enrico M. Dec 01 '15 at 13:51