Find $$\lim_{n\rightarrow \infty}\frac{(2n-1)!!}{(2n)!!}.$$
I have tried the following: $$(2n-1)!!=\frac{(2n)!}{2^{2n}n!}$$ $$(2n)!!=2^nn!$$ $$\lim_{n\rightarrow \infty}\frac{(2n-1)!!}{(2n)!!}=\lim_{n\rightarrow \infty}\frac{(2n)!}{2^{2n}(n!)^2}$$
Now using Stirling approximation, $$n!=\sqrt {2\pi n}\left(\frac{n}{e}\right)^{n}$$ $$(2n)!=\sqrt {2\pi 2n}\left(\frac{2n}{e}\right)^{2n}$$
$$\lim_{n\rightarrow \infty}\frac{(2n)!}{2^{2n}(n!)^2}=\lim_{n\rightarrow \infty}\frac{\sqrt{2\pi}\sqrt{2n}\left(\frac{2n}{e}\right)^{2n}}{2^{2n}(\sqrt{2\pi})^2(\sqrt{n})^2\left(\frac{n}{e}\right)^{2n}}$$ $$=\frac{1}{\sqrt{2\pi}}\lim_{n\rightarrow \infty}\frac{\sqrt{2n}\left(\frac{2n}{e}\right)^{2n}}{2^{2n}(\sqrt{n})^2\left(\frac{n}{e}\right)^{2n}}$$
How to proceed with solving this limit?