2

The set of all complex numbers $(z_1,z_2)$ which satisfy

$$\frac{|z_1 -z_2|}{|1-\overline{z_1}z_2|} \lt 1 $$ is?

(Here $\overline{z_1}$ is $z_1$'s cojugate.)

I attempted to write $z_1$ a as $x_1 + iy_1$ and $z_2$ as $x_2 + iy_2 $ and tried to simplify. But then it didn't seem to work. How do I go about this?

Anamaki
  • 1,002
  • 1
    Did you square both sides of the inequality? That should help you get rid of the absolute function.

    It would also be helpfull, if you told us what the desired representation of the set is, since the equation already defines the set.

    – Philipp Matthias Schäfer May 09 '14 at 07:59
  • 1
    The desired representation? I'm not sure what you mean by that but the given answer is the union of the sets (a) and (b) where (a) and (b) are a) $|z_1| \gt 1$ and $|z_2| \gt 1$ b) $|z_1| \lt 1$ and $|z_2| \lt 1$ – Anamaki May 09 '14 at 08:06
  • If this is the answer you were given, then it should be $$\frac{|z_1-z_2|}{|1-\overline{z_1}z_2|}<1$$ and not what you asked. – Omran Kouba May 09 '14 at 08:36
  • Yes it is what you said. – Anamaki May 09 '14 at 09:47
  • I have edited the post so that the inequality is as in Omran Kouba's comment. – Michael Albanese May 28 '14 at 09:33

2 Answers2

1

Here is a solution that falls out of my comment to Michael Albanese's solution, and which seems to be what was hinted at by Philipp Schäfer in his comment. Since $\lvert z\rvert^2 = z\overline z$ for all $z \in \mathbb C$, we have

\begin{align} \frac{\lvert z_1-z_2 \rvert^2}{\lvert 1-\overline z_1 z_2 \rvert^2} &= \frac{(z_1-z_2)\bigl(\overline z_1 - \overline z_2\bigr)}{(1-\overline z_1 z_2)(1-z_1\overline z_2)} \\ &= \frac{\lvert z_1\rvert^2 - z_1\overline z_2 - \overline z_1 z_2 + \lvert z_2\rvert^2}{1-z_1\overline z_2 - \overline z_1 z_2 + \lvert z_1\rvert^2 \lvert z_2\rvert^2} \\ &= 1 - \frac{1 - \lvert z_1 \rvert^2 - \lvert z_2 \rvert^2 + \lvert z_1\rvert^2 \lvert z_2\rvert^2}{1-z_1\overline z_2 - \overline z_1 z_2 + \lvert z_1\rvert^2 \lvert z_2\rvert^2} \\ &= 1 - \frac{(1-\lvert z_1\rvert^2)(1-\lvert z_2\rvert^2)}{\lvert 1-\overline z_1 z_2 \rvert^2}. \end{align}

Thus if $\overline z_1 z_2 \neq 1$, the inequality $\frac{\lvert z_1-z_2 \rvert}{\lvert 1-\overline z_1 z_2 \rvert} < 1$ is equivalent to $(1-\lvert z_1\rvert^2)(1-\lvert z_2\rvert^2) > 0$, which is true if and only if either

  • $\lvert z_1\rvert < 1$ and $\lvert z_2\rvert < 1$, or
  • $\lvert z_1\rvert > 1$ and $\lvert z_2\rvert > 1$.

Since $\overline z_1 z_2 \neq 1$ is incompatible with either of the bulleted conditions, $$\begin{align}&\left\{(z_1, z_2) \in \mathbb C^2 : \frac{\lvert z_1-z_2 \rvert}{\lvert 1-\overline z_1 z_2 \rvert} < 1\right\} \\ &\mspace{25mu}= \left\{(z_1, z_2) \in \mathbb C^2 : \text{$\lvert z_1 \rvert < 1$ and $\lvert z_2 \rvert < 1$}\right\} \cup \left\{(z_1, z_2) \in \mathbb C^2 : \text{$\lvert z_1 \rvert > 1$ and $\lvert z_2 \rvert > 1$}\right\}.\end{align}$$

epimorphic
  • 3,219
1

The key to answering this question is knowing that for $a \in \mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$, $$T_a(z) = \frac{z - a}{1 - \overline{a}{z}}$$ is an automorphism of $\mathbb{D}$. In addition, if $|z| = 1$, then $|T_a(z)| = 1$, and if $|z| > 1, z \neq \frac{1}{\overline{a}}$, then $|T_a(z)| > 1$; note, we can make sense of $T_a(z)$ at $z = \frac{1}{\overline{a}}$ if we consider $T_a$ as an automorphism of the Riemann sphere but that isn't really necessary here.

First note that

$$\frac{|z_1 - z_2|}{|1-\overline{z_1}{z_2}|} = \frac{|z_2 - z_1|}{|1-\overline{z_1}{z_2}|} = \left|\frac{z_2 - z_1}{1-\overline{z_1}{z_2}}\right| = |\,T_{z_1}(z_2)|.$$

So, if $\underline{|z_1| < 1}$, $(z_1, z_2)$ satisfies the desired inequality if and only if $|z_2| < 1$.

Now note that

$$|\,T_{z_1}(z_2)| = \left|\frac{z_2 - z_1}{1-\overline{z_1}{z_2}}\right| = \left|\frac{\frac{z_2}{\overline{z_1}z_2} - \frac{z_1}{\overline{z_1}z_2}}{\frac{1}{\overline{z_1}z_2}-1}\right| = \left|\frac{\frac{z_1}{\overline{z_1}z_2} - \frac{1}{\overline{z_1}}}{1-\frac{1}{\overline{z_1}z_2}}\right| = \left|\frac{\frac{z_1}{\overline{z_1}z_2} - \frac{1}{\overline{z_1}}}{1-\frac{1}{z_1}\frac{z_1}{\overline{z_1}z_2}}\right| = \left|\,T_{\frac{1}{\overline{z_1}}}\left(\frac{z_1}{\overline{z_1}z_2}\right)\right|.$$

So, if $\underline{|z_1| > 1}$ (so that $\left|\frac{1}{\overline{z_1}}\right| < 1$), $(z_1, z_2)$ satisfies the desired inequality if and only if $\left|\frac{z_1}{\overline{z_1}z_2}\right| < 1$. As

$$\left|\frac{z_1}{\overline{z_1}z_2}\right| = \frac{|z_1|}{|\overline{z_1}||z_2|} = \frac{|z_1|}{|z_1||z_2|} = \frac{1}{|z_2|}$$

we see that if $|z_1| > 1$, $(z_1, z_2)$ satisfies the desired inequality if and only if $\frac{1}{|z_2|} < 1$, that is, $|z_2| > 1$.

Finally, if $\underline{|z_1| = 1}$, then

\begin{align*} \left|\frac{z_1 - z_2}{1-\overline{z_1}z_2}\right|^2 &= \frac{z_1 - z_2}{1-\overline{z_1}z_2}\overline{\left(\frac{z_1 - z_2}{1-\overline{z_1}z_2}\right)}\\ &\\ &= \frac{z_1 - z_2}{1-\overline{z_1}z_2}\frac{\overline{z_1} - \overline{z_2}}{1-z_1\overline{z_2}}\\ &\\ &= \frac{|z_1|^2 - z_1\overline{z_2} - \overline{z_1}z_2 + |z_2|^2}{1 - z_1\overline{z_2} - \overline{z_1}z_2 + |z_1|^2|z_2|^2}\\ &\\ &= \frac{1 - z_1\overline{z_2} - \overline{z_1}z_2 + |z_2|^2}{1 - z_1\overline{z_2} - \overline{z_1}z_2 + |z_2|^2}\\ &\\ &= 1. \end{align*}

So, if $|z_1| = 1$, there is no $z_2$ such that $(z_1, z_2)$ satisfies the desired inequality.

Therefore, if

$$S = \left\{(z_1, z_2) \in \mathbb{C}^2 : \frac{|z_1 - z_2|}{|1-\overline{z_1}z_2|} < 1\right\}$$

then $S = \{(z_1, z_2) \in \mathbb{C}^2 : |z_1| < 1, |z_2| < 1\} \cup \{(z_1, z_2) \in \mathbb{C}^2 : |z_1| > 1, |z_2| > 1\}$.

  • Er, sorry again, I made a sign error. That should be: The inequalities for $\lvert T_a(z)\rvert$ stated at the beginning can be seen from $$\left\lvert\frac{z-a}{1-\overline az}\right\rvert^2 = 1 - \frac{(1-\lvert a \rvert)(1-\lvert z \rvert)}{\lvert 1 - \overline az\rvert^2}.$$ – epimorphic Dec 28 '14 at 02:08
  • 1
    @epimorphic: Nice. I have never seen that expression before. – Michael Albanese Dec 28 '14 at 02:10
  • 1
    I guess that's true. Technically. :P – epimorphic Dec 28 '14 at 02:15
  • I forgot to square $\lvert a\rvert$ and $\lvert z\rvert$ on the right side. This is just sad now. Though with that amendment it should be finally correct (I checked numerically). – epimorphic Dec 28 '14 at 03:08