1

Prove that $$\left|\frac{z-w}{1-\overline{z}w}\right|<1$$ for $|z|<1$, $|w|<1$ How I do it: First notice that:

$\left|\frac{z-w}{1-\overline{z}w}\right|<1 \leftrightarrow |z-w| < |1-\overline{z}w|$ Since $$|z-w|<|z-w|||\overline{z}| = |z^2-\overline{z}w| < |1-\overline{z}w|$$ we are done. The professor said this one might be a bit tricky though so I'm wondering if I did something wrong because this seemed pretty straightforward, no?

Lozansky
  • 1,035

0 Answers0