Possible Duplicate:
Order of elements in abelian groups
Let $G$ be an abelian group and suppose that $G$ has elements of orders $m$ and $n$, respectively. Prove that $G$ has an element whose order is the least common multiple of $m$ and $n$.
I've attempted this problem for quite some time, but didn't seem to get anywhere.
First, let $a$ and $b$ be the elements whose orders are $m$ and $n$, respectively. I guessed that we can find the element of order $lcm(m,n)$ explicitly, instead of simply proving its existence. Furthermore, I also guessed that the element can be expressed in the form $a^kb^l$, because the statement must also hold when $G$ is generated by $a$ and $b$.
Then I let $k$ be the smallest positive integer such that $a^k$ is a power of $b$, say $a^k=b^l$. Then I proved that $l$ is also the smallest positive integer such that $b^l$ is a power of $a$, and that $ml=nk$. I'm not sure whether it's correct though.
Then I tried to find the order of ab. I can prove that the order is divisible by $\frac{lcm(m,n)}{\gcd(m,n)}$, but I can't prove whether it is equal to $lcm(m,n)$. Apparently, taking any $a^ib^j$ won't be any better. And now, I'm at wits end.
Please tell me whether I'm on the right path. If not, please give me some adequate hints so I can work on it.