My attempt: Let $O(a)=m, O(b)=n$, then $mx+ny=1$
Let $O(ab)=p$, then using commutative property, $(ab)^p=a^pb^p=e$, which is the identity.
Then $a^p=e, b^p=e$, hence, $m | p$ and $n | p$.
So, $p=mk_1=nk_2$. I'm stuck here. I understand I need to prove $p=mn$, please help.
http://math.stackexchange.com/questions/78544/if-orda-m-ordb-n-then-does-there-exist-c-such-that-ord-c-lcmm-n
– Chiranjeev_Kumar Jul 14 '15 at 14:08