If I have a field extension of $\mathbb{Q}$ given by $\mathbb{Q}(\alpha)$ and the only thing I know about the primitive element $\alpha$ is it's minimal polynomial $p(x) = a_0 + a_1x + ... + x^n$ such that $p(\alpha) = 0$ how can I find the norm of an element $\beta \in \mathbb{Q}(\alpha)$?
I've got partial notes that seem to claim that I can define a linear map $T_\beta$ such that when I take the determinant of the associated matrix I'll end up with the norm of $\beta$ but I can't find the rest of my notes and I was hoping someone knows how to construct the matrix for $T_\beta$
EDIT: $\beta$ is given as $\beta = b_0 + b_1\alpha + ...$ with $\{\alpha^i\}$ forming a power basis for $\mathbb{Q}(\alpha)$