Let $\alpha:=\sqrt[3]{7}$ and let $K:=\mathbb{Q}[\sqrt[3]{7}]$. Consider a generic algebraic integer $a+b\alpha+c\alpha^2$, with $a,b,c\in\mathbb{Z}$. I want to find $N(a+b\alpha+c\alpha^2)$, where $N$ denotes the norm of $K$ over $\mathbb{Q}$. I wrote $N(a+b\alpha+c\alpha^2)=(a+b\alpha+c\alpha^2)(a+b\alpha\zeta+c\alpha^2\zeta^2)(a+b\alpha\zeta^2+c\alpha^2\zeta)$, where $\zeta$ is a 3rd primitive root of $1$, and after a very very long computation I found $a^3+7b^3+49c^3-21abc$.
Is there some way to shorten this?