2013 10C. Question: Consider the bounded surface S that is the union of $x^2 + y^2 = 4$ for $−2 \le z \le 2$ and $(4 − z)^2 = x^2 + y^2 $ for $2 \le z \le 4.$ Sketch the surface. Use suitable parametrisations for the two parts of S to verify Stokes’s Theorem for $\mathbf{F} = (yz^2,0,0)$.
Herein, I'm asking only about proof strategy for Without Stokes's Theorem - Calculate $\iint_S \operatorname{curl} \mathbf{F} \cdot\; d\mathbf{S}$ for $\mathbf{F} = yz^2\mathbf{i}$ - 2013 10C, so omit irrelative calculations here. As I do there, denote the $2 \le z \le 4$ cone P, and the $-2 \le z \le 2$ cylinder C.
User ellya's solution: $\bbox[3px,border:2px solid gray]{ \text{ 1st, do surface integral over cylinder C} }$ Parameterize from the start. So let $x=2\cos\phi \text{ and } y=2\sin\phi $, where $ 0\le\phi\le 2\pi $ and $-2 \le z \le 2$.
Now parameterise our surface $C$ as $\mathbf{r} (\phi,z)=(2\cos\phi,2\sin\phi,z) \implies \mathbf{ F \, (r} (\phi,z) \, ) =(2z^2\sin\phi,0,0)$.
$1.$ Why parameterise with $x = ...\cos\theta, y = ...\sin\theta$? Why not reverse them, say $y = ...\cos\theta, x = ...\sin\theta$? Would this still function?
With this orientation, the normal $\mathbf{n} =\mathbf{r}_{\phi}\times \mathbf{r}_z =(2\cos\phi,2\sin\phi,0)$
$2.$ How would one determine that it's $\color{green}{(\partial_{\phi} \mathbf{r} \times \partial_{z} \mathbf{r}} )$ that 'produces the outward normal which is what we want', and not $\color{darkred}{(\partial_{z} \mathbf{r} \times \partial_{\phi} \mathbf{r} )}$, for BOTH pieces C & P?
I'm aware that everything must be positively oriented by convention.
I'm not enquiring about a geometric or visual answer.
$ \nabla\times F=\left| \begin{array}{ccc} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ yz^2 & 0 & 0 \end{array} \right|=(0,\frac{\partial}{\partial z}(yz^2),-z^2)=(0,2yz,-z^2) \quad \color{orangered}{ (*) }$
Substitute the parametrisation for C into $\color{orangered}{ (*) } : curl F =(0,4z\sin\phi,-z^2)$.
So $\iint_C(\nabla\times \mathbf{F})\cdot d\mathbf{S} = \int_0^{2\pi}\int_{-2}^2(0,4z\sin\phi,-z^2)\cdot(2\cos\phi,2\sin\phi,0) \,dz ~ d\phi = ...$
$\bbox[3px,border:2px solid gray]{ \text{ 2nd and last, compute for cone $P$. } }$ The question hypothesises $4 - z = $ radius of the cone, so $z = 4 - r$. The cross-section of any cone is just a circle with radius $z$. So parameterise with $\mathbf{r} (\phi,z)=((4-z)\cos\phi,(4-z)\sin\phi,4-r)$ where $ 0\le\phi\le 2\pi $ and $2 \le z \le 4$.
Substitute the parametrisation for P into $\color{orangered}{ (*) } : curl F =(0,2z(4-z)\sin\phi,-z^2)$.
$\mathbf{n} =\mathbf{r}_{\phi}\times \mathbf{r}_z = ((4-z)\cos\phi,(4-z)\sin\phi,4-z)$
$3,4$: Same questions $1, 2$, but for P now.