We use the fact that usual powers can be expressed as a combination of falling factorials $x^{(k)}$, as well as the relation $x^{(k)}=k!\binom{x}{k}$ to yield the series:
$$x^n=\sum_{j=0}^n \left\{n \atop j\right\}j!\binom{x}{j}$$
where $\left\{n \atop j\right\}$ is a Stirling subset number. (See page 262 of Concrete Mathematics for a justification.) For $n=3$, we then have
$$\begin{align*}x^3&=0!\left\{3 \atop 0\right\}\binom{x}{0}+1!\left\{3 \atop 1\right\}\binom{x}{1}+2!\left\{3 \atop 2\right\}\binom{x}{2}+3!\left\{3 \atop 3\right\}\binom{x}{3}\\&=1\times0\times\binom{x}{0}+1\times1\times\binom{x}{1}+2\times3\times\binom{x}{2}+6\times1\times\binom{x}{3}\\&=x+6\binom{x}{2}+6\binom{x}{3}\end{align*}$$
and presto!