You can also use Fourier methods here, just as was done here, beginning from the form discussed above derived after an integration by parts. Note that
$$\int_{-\infty}^{\infty} dx \, x \operatorname{csch}{(\pi x/2)} \, e^{i k x} = 2 \operatorname{sech^2}{\left ( k \right )} $$
Therefore, Parseval's equality implies that
$$I = \frac1{2 \pi} \int_0^{\infty} dk \, \pi \, e^{-k} 2 \operatorname{sech^2}{\left ( k \right )} $$
Integrate by parts to get that
$$I = \int_0^{\infty} dk \, e^{-k} \, \tanh{k} = \int_0^{\infty} dk \, e^{-k} \frac{1-e^{-2k}}{1+e^{-2k}}$$
Expand the denominator to evaluate the integral in terms of a sum:
$$I = \sum_{n=0}^{\infty} (-1)^n \int_0^{\infty} dk \, \left (e^{-(2 n+1) k}-e^{-(2 n+3) k} \right ) = \sum_{n=0}^{\infty} (-1)^n \left (\frac1{2 n+1}-\frac1{2 n+3} \right ) \\ = \frac{\pi}{4} - \left ( 1-\frac{\pi}{4} \right ) = \frac{\pi}{2}-1$$
as was to be shown.
ADDENDUM
It's only fair that I at least outline a proof of the first equation. In fact, one uses symmetry to rewrite the integral as
$$\int_{-\infty}^{\infty} dx \, x \operatorname{csch}{(\pi x/2)} \, e^{i k x} = 2 \operatorname{Re}{\left [\int_0^{\infty} dx \, x \operatorname{csch}{(\pi x/2)} \, e^{i k x} \right ]} $$
Then use the definition of csch to turn the integral into a sum equal to
$$4 \sum_{n=0}^{\infty} \frac{\pi^2 (n+1/2)^2 - k^2}{[\pi^2 (n+1/2)^2 + k^2]^2} = \frac{2}{\pi^2} \sum_{n=-\infty}^{\infty} \frac{ (n+1/2)^2 - k^2/\pi^2}{[(n+1/2)^2 + k^2/\pi^2]^2}$$
The sum on the RHS may be evaluated using the Residue theorem; the sum is then equal to
$$-\frac{2}{\pi} \sum_{\pm} \left [\frac{d}{dz} \frac{[(z+1/2)^2-k^2/\pi^2] \cot{\pi z}}{(z+1/2\pm i k/\pi)^2} \right ]_{z=-\frac12 \pm i \frac{k}{\pi}} $$
which leads to the stated result.