Can anyone show how to evaluate this integral?
$\displaystyle \int^{\infty}_{-\infty} \frac{dx}{(1+4 x^2)\cosh(\pi x)} = \ln2$
Can anyone show how to evaluate this integral?
$\displaystyle \int^{\infty}_{-\infty} \frac{dx}{(1+4 x^2)\cosh(\pi x)} = \ln2$
This is a candidate for Parseval's theorem:
$$\int_{-\infty}^{\infty} dx \, f(x) g^*(x) = \frac1{2 \pi} \int_{-\infty}^{\infty} dk \, F(k) G^*(k) $$
Here,
$$f(x) = \frac1{1+4 x^2} \implies F(k) = \frac{\pi}{2} e^{-\frac12 |k|}$$ $$g(x) = \operatorname{sech}{\pi x} \implies G(k) = \operatorname{sech}{\frac{k}{2}}$$
The integral is then
$$\frac12 \int_0^{\infty} dk \, e^{-k/2} \, \operatorname{sech}{\frac{k}{2}} = 2 \int_0^1 du \frac{u}{1+u^2} = \log{2}$$